Чтобы окончательно выбрать подлинную гипотезу, которая сможет считаться законом развития и формирования Луны, нужно провести экспериментальную проверку каждой из них. Но всегда ли мы можем произвести необходимый для этого эксперимент? Бывают ведь случаи, когда гипотеза касается далекого и притом неповторимого прошлого, как, например, в случае с Луной, или относится к далекому будущему, сведения о котором, быть может, удастся проверить через десятки, сотни, а иногда и миллионы лет? Вот тут-то нам и понадобится еще одно новое понятие, имеющее самое прямое отношение к научнрму познанию. Это понятие «модель».
Слово «модель» происходит от французского modelle и означает «образец». Однако в современной науке первоначальный смысл этого слова изменился. Чтобы упростить нашу задачу, я познакомлю вас лишь с четырьмя основными значениями понятия «модель», наиболее распространенными и часто применяемыми в научной литературе.
1. Материальные модели. Материальными моделями являются некоторые объекты, предметы, которыми мы пользуемся при изучении других, непосредственно интересующих нас объектов и предметов. Модель, понимаемая в этом смысле, выступает как объект-заместитель интересующего нас явления или процесса. Примером материальной модели может служить макет Останкинской телевизионной башни, первоначально созданный архитекторами и конструкторами для того, чтобы проверить правильность своих расчетов и некоторые особенности будущей эксплуатации настоящей телебашни. Как правило, подобные макеты создаются при строительстве самолетов, кораблей, заводов, электростанций и многих других сооружений. Будучи гораздо меньшими по размеру, более дешевыми, более простыми, часто изготавливаемыми из других материалов, такие объекты-заместители, или модели, позволяют изучить целый ряд особенностей будущих сооружений. Полученные во время экспериментов с моделями знания затем с соответствующими поправками могут быть перенесены на объекты-оригиналы или прототипы, как иногда называют основные исследуемые учеными или инженерами явления и процессы.
2. Второй тип или класс моделей — это так называемые воображаемые модели. Ученые часто придумывают, воображают некоторые объекты в чувственной, наглядной форме, причем такой, что в ней сохранены лишь существенные и наиболее важные черты, свойства и особенности реальных объектов, учет и исследование которых необходимы для решения определенных познавательных задач. Часто в самой действительности объекты подобного рода не существуют и даже не могут по тем или иным причинам существовать. Поэтому воображаемые наглядные образы вещей, выступающие в качестве объектов-заместителей действительных явлений и процессов, не могут быть воплощены в виде макетов или технических, физических, химических или биологических явлений, относящихся к моделям первого рода. Воображаемые модели позволяют отвлечься от второстепенных особенностей действительных объектов и представить таким образом их наиболее существенные черты и особенности как бы в увеличенном виде под объективом «умственного микроскопа» ученого.
Прекрасный пример воображаемых моделей мы находим у Максвелла. Стремясь связать в рамках единой теории явления электричества и магнетизма, экспериментально обнаруженные Фарадеем и другими исследователями, Максвелл попытался представить электрический ток в виде особой, несжимаемой жидкости, текущей по проводнику так же, как обычная жидкость течет по трубке. При этом напряжение и силу электрического тока он сравнивал с давлением, которое испытывает жидкость в разных точках трубки, и количеством жидкости, проходящим через поперечное сечение трубки за единицу времени. «Электрическая» жидкость Максвелла не обладала вязкостью. Ее частицы не взаимодействовали между собой, подобно молекулам воды или другой жидкости. В этом смысле она резко отличалась от обычных жидкостей и не могла быть фактически создана даже в экспериментальных условиях.
Зачем же понадобилась такая воображаемая жидкость великому английскому физику? Дело в том, что электрическая «жидкость» Максвелла позволяла применить к изучению электрических процессов уравнение гидродинамики — раздела механики и физики, хорошо разработанного к этому времени и выраженному в развитой математической форме, что позволяло получать точные количественные характеристики изучаемых процессов и проверять их в эксперименте с большой надежностью.
Таким образом, воображаемая «жидкохггь» Максвелла была моделью реального электрического тока, разумеется, моделью приближенной, в достаточной степени условной, но все же обладающей сходством с реальным физическим явлением, по крайней мере в наиболее важных и существенных для исследования чертах. Это и позволило перенести в область электродинамики целый ряд уравнений и методов, разработанных в гидродинамике.