Ваш вопрос тем более уместен, что заметить сложный, системный характер окружающих нас явлений и процессов не так уж трудно для человека, обладающего мало-мальскими способностями к наблюдениям и размышлениям над увиденным. В самом деле, не только большие города, но и различные технические сооружения от стенобитной машины до парохода, различные общественные организации от войска древних фараонов до политических и профсоюзных объединений современного общества, живые организмы, растения и животные дают нам сотни примеров сложных системных объектов. Естественно, что люди, и особенно ученые, не могли долгое время не замечать этого важного обстоятельства. Дело, однако, заключается не в простом признании системного характера окружающих нас явлений, а в способе познания и изучения сложных систем.
Уже в глубокой древности философы и ученые, наблюдая за различными явлениями природы и общественной жизни, постепенно пришли к выводу, что сложные явления следует в процессе их изучения расчленять, разделять на составляющие части. Знаменитый древнегреческий философ Демокрит (460—370 гг. до н. э.) и его последователи Эпикур (341—270 гг. до н. э.) и др. учили, что все явления в живой и неживой природе состоят из мельчайших, далее неделимых частиц— атомов (от греческого слова atomus — неделимый). Атомы отличаются формой, размерами и положением в пространстве, соединяясь друг с другом посредством особых невидимых крючков и зазубрин, они образуют все известные нам тела.
-Когда европейская наука начиная с середины XVI и особенно в XVII веке попыталась преодолеть влияние средневековой церковной схоластики, полностью отрицавшей роль наблюдений и эксперимента в познании мира и сводившей все исключительно к умозрительным размышлениям, сторонники новой науки на первый план выдвинули метод эмпирическо-rot
то есть опытного, исследования. Суть его заключалась в утверждении, что понимание любого сложного явления, будь то Солнечная система, машина, растение или животное, может быть полностью достигнуто благодаря точному и последовательному описанию и изучению его частей и элементов. Согласно этому взгляду, описав элементы системы, изучив их порознь, мы можем получить исчерпывающие, точные знания по системе в целом простым суммированием знаний об элементах этой системы.Такой подход долгое время оставался господствующим в науке. Он казался не только верным, глубоко истинным, но и единственно возможным. Для этого имелись свои объективные основания.
Новая наука, сложившаяся благодаря, работам Галилея, Кеплера, Ньютона и ряда их современников, начала развиваться прежде всего в области механики, астрономии и оптики. Причина этого заключается в том, что механические взаимодействия и механическая форма движения в целом являются простейшими, наиболее доступными наблюдению и эксперименту, с одной стороны, и точному математическому описанию и анализу, с другой.
С самого начала экспериментальное естествознание Нового времени, сочетавшее в себе наблюдение за простейшими формами движения с применением математики привело к таким разительным и неожиданным открытиям, казалось столь убедительным и неопровержимым, что на несколько столетий подчинило себе лучшие умы Европы и Америки.
Имелось и другое основание для торжества механистического подхода к научному исследованию. Оно коренилось в философском утверждении, что научное познание должно начинать с самого простого, чтобы путем последовательных усложнений перейти к пониманию сложного целого объекта.
Отчетливее всего эта точка зрения была выражена в трудах знаменитого английского философа Фрэнсиса Бэкона (1561 —1626) и французского философа и математика Рене Декарта (1596—1650). Первый из них провозгласил метод восхождения от части к целому, от единичного явления к совокупности явлений единственным научным методом. Второй утверждал, что всякое научное познание заключается в расчленении, разделении целого на максимальное число наименьших частей и элементов и в последовательном познании этих элементов, ибо познание целого осуществляется через познание его образующих.
Следует сказать, что при тогдашнем состоянии техники, научного эксперимента и наблюдения, при тогдашнем уровне математики, не перешагнувшей еще пределы современной нам школьной алгебры, иной подход трудно, а может быть, и невозможно себе представить.
Вплоть до XIX века, пока классическое механистическое по своему методу естествознание одерживало одну победу за другой и приносило бесспорные впечатляющие результаты, в справедливости подобного подхода никто не сомневался. Однако уже в XIX веке сама жизнь потребовала перейти к изучению очень сложных систем в природе и обществе.
Чарлз Дарвин в знаменитом труде «Происхождение видов путем естественного отбора, или Сохранение благоприятствуемых пород в борьбе за жизнь» (1859) попытался обнаружить и сформулировать законы развития живых организмов, иными словами, законы развития и совершенствования всей живой системы в целом.