Читаем Трактат об электричестве и магнетизме полностью

10. Характеризуя разновидности физических величин, очень важно знать, как они зависят от направлений тех координатных осей, которые обычно используются для установления местоположения предметов. Введение Декартом координатных осей в геометрию было одним из величайших шагов в развитии математики, ибо это свело методы геометрии к расчётам, совершаемым над численными величинами. Положение точки сделалось зависящим от длин трёх линий, проводимых всякий раз в определённых направлениях, а линия, соединяющая две точки, подобным же образом стала рассматриваться как результирующая трёх линий.

Однако, в отличие от вычислений, для многих целей физического обоснования желательно избегать явного введения декартовых координат, сосредоточивая внимание сразу же на точке в пространстве, а не на трёх её координатах, или на величине и направлении силы, а не на трёх её составляющих. Такой подход к рассмотрению геометрических и физических величин является более простым и естественным, чем другой, координатный, хотя связанные с ним представления не получили полного развития до тех пор, пока Гамильтон не сделал следующего великого шага в обращении с пространством и не изобрёл своё Кватернионное Исчисление.

Поскольку декартовы методы всё ещё остаются наиболее привычными для исследователей, занимающихся наукой, и они действительно являются наиболее удобными при вычислениях, мы тоже будем выражать все наши результаты в декартовой форме. Я убеждён, однако, что введение идей, извлечённых из кватернионных операций и методов, принесёт нам огромную пользу при изучении всех разделов нашего курса, особенно электродинамики, где приходится иметь дело с рядом физических величин, соотношения между которыми можно существенно проще представить при помощи нескольких выражений по Гамильтону, чем через обычные уравнения.

11. Одной из наиболее важных особенностей метода Гамильтона является разделение величин на Скаляры и Векторы.

Скалярная величина допускает полное определение при помощи одной-единственной численной характеристики. Её численное значение никоим образом не зависит от принятого нами направления координатных осей.

Вектор, или Направленная величина, для своего определения требует трёх численных характеристик, и проще всего они могут быть поняты как величины, отсчитываемые в направлениях координатных осей.

Скалярные величины не включают в себя никаких направлений. Объём геометрической фигуры, масса и энергия материального тела, гидростатическое давление в какой-либо точке жидкости, потенциал в какой-либо точке пространства - всё это примеры скалярных величин.

Векторная величина имеет направление, а также модуль, причём обращение её направления на противоположное изменяет её знак. Смещение точки, представляемое прямой линией, проведённой из-её начального положения в конечное, может быть взято в качестве типичной векторной величины, из которой в самом деле и было образовано название Вектор.

Скорость тела, его импульс, сила, действующая на тело, электрический ток, намагниченность частицы железа - всё это примеры векторных величин.

Существуют и другого рода физические величины, которые хотя и связаны с направлениями в пространстве, но не являются векторами. Натяжения и деформация в твёрдых телах служат этому примерами, сюда же относятся некоторые свойства тел, изучаемые в теории упругости и теории двойного лучепреломления. Для определения величин этого класса требуется девять численных характеристик. На языке кватернионов они выражаются как линейные и векторные функции от вектора.

Сложение одной векторной величины с другой, однотипной с ней, производится в соответствии с правилом сложения сил в статике. Действительно, доказательство, которое даёт Пуассон для «параллелограмма сил», применимо к составлению любых величин, перевёртывание (перестановка концов) которых равносильно обращению их знака.

В тех случаях, когда у нас появится желание обозначить векторную величину одним символом и привлечь внимание к тому факту, что она является вектором и что у неё необходимо рассматривать как направление, так и модуль, мы будем прибегать к заглавным готическим буквам, например A, B, …

В кватернионном исчислении положение точки в пространстве определяется вектором, проведённым в эту точку из некоторой фиксированной точки, называемой начальной точкой или началом координат. Если нам нужно изучать какую-либо физическую величину, значение которой зависит от положения точки, то она рассматривается как функция вектора, проведённого из начала координат. Сама эта функция может быть и скаляром, и вектором. Плотность тела, его температура, его гидростатическое давление, потенциал в точке - всё это примеры скалярных функций. Результирующая сила в точке, скорость жидкости в точке, скорость вращения элемента жидкости, а также момент пары сил, производящий вращение,- всё это примеры векторных функций.

12. Физические векторные величины можно разделить на два класса: в одном из них величина определена относительно линии, в другом - относительно площади.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука