242.
Мы видели, что когда электродвижущая сила вызывает ток через проводник, электричество перемещается от места с более высоким к месту с более низким значением потенциала. Если это перемещение осуществляется путём конвекции, т. е. с помощью повторяющихся переносов заряда на изолированном шаре от одного места к другому, то электрические силы совершают над шаром работу, и это обстоятельство может оказаться существенным. Действительно, это оказывается отчасти существенным в случае тех цепей с сухими батареями, где электроды выполнены в виде колокольчиков, а шар, переносящий заряд, колеблется, подобно маятнику, между этими двумя колокольчиками и соударяется с ними по очереди. При этом электрическое действие поддерживает колебание маятника, а также обеспечивает распространение звука колокольчиков на расстоянии.В случае проводящей проволоки мы имеем дело с тем же перемещением электричества от места с более высоким к месту с более низким потенциалом без совершения при этом какой-либо внешней работы. Поэтому закон Сохранения Энергии ведёт нас к поискам работы, производимой внутри проводника. В электролите эта внутренняя работа состоит частично в разделении его компонентов. В других проводниках она целиком переходит в тепло.
В этом случае энергия, перешедшая в тепло, равна произведению электродвижущей силы на количество проходящего электричества. Но электродвижущая сила равна произведению тока на сопротивление, а количество электричества равно произведению тока на время. Поэтому количество тепла, умноженное на механический эквивалент единицы тепла, равно квадрату силы тока, умноженному на сопротивление и время.
Тепло, выделяемое электрическим током при преодолении сопротивления проводника, было определено д-ром Джоулем (Joule). Он сначала установил, что тепло, производимое в заданное время, пропорционально квадрату тока, а затем, проведя тщательные абсолютные измерения всех рассматриваемых величин, подтвердил справедливость уравнения
JH
=
C^2Rt
,
где J - найденный Джоулем механический эквивалент теплоты, H - число единиц теплоты, C - сила тока, R - сопротивление проводника, t - время прохождения тока.
Эти соотношения между электродвижущей силой, работой и теплом были впервые полностью объяснены сэром У. Томсоном в статье, посвящённой приложению принципа механического действия к измерению электродвижущих сил
1.1
243.
Аналогия между проводимостью электричества и проводимостью тепла на первый взгляд кажется почти полной. Если взять две геометрически подобных системы, таких, что коэффициент теплопроводности в любой части первой системы пропорционален проводимости электричества в соответствующей части второй системы, а также сделать и температуру в каждой части первой системы, пропорциональной электрическому потенциалу в соответствующей точке второй системы, то поток тепла через любую поверхность в первой системе будет пропорционален потоку электричества через соответствующую поверхность во второй системе.Таким образом, в приведённом нами примере поток электричества соответствует потоку тепла, а электрический потенциал соответствует температуре. Электричество стремится перетекать от мест с высоким к местам с низким потенциалом, в точности так же, как тепло стремится перетекать от мест с высокой к местам с низкой температурой.
244.
Таким образом, теория электрического потенциала и теория теплоты могут быть использованы одна для иллюстрации другой. Однако между электрическими и тепловыми явлениями имеется одно замечательное различие.Внутри замкнутого проводящего сосуда подвесим на шёлковой нитке какое-нибудь проводящее тело, затем зарядим сосуд электричеством. Потенциал сосуда и всего его содержимого сразу же возрастёт, но как бы долго и как бы сильно ни электризовался сосуд, внутри него не будет замечено никаких признаков электризации, а тело, извлечённое из сосуда, не проявит никаких электрических воздействий, независимо от того, находилось ли оно в контакте с внутренней поверхностью сосуда или нет.
Однако если сосуд нагреть до высокой температуры, то тело внутри тоже нагреется до той же температуры, хотя и через значительное время. Если затем вынуть тело из сосуда, оно окажется горячим и будет таким в течение некоторого времени, продолжая испускать тепло.
Различие между этими явлениями заключается в том, что тела способны поглощать и испускать тепло, в то время как у них нет соответствующего свойства по отношению к электричеству. Нельзя нагреть тела, не передав ему определённого количества тепла, зависящего от массы и теплоёмкости тела. Но электрический потенциал тела может быть сделан сколь угодно большим с помощью описанного выше способа, без передачи другому телу какого-нибудь электричества.
245.
Предположим снова, что мы нагрели тело, а затем поместили его в замкнутый сосуд. Внешняя часть сосуда будет сначала иметь температуру окружающих тел, но скоро она нагреется и будет оставаться горячей, пока тепло не покинет внутреннее тело.