Дело в том, что в кристаллах углеродного семейства — в германии и кремнии — действует неписаный закон: «Структура важнее всего». Это значит, что если ради сохранения своей прекрасной алмазоподобной кристаллической решетки атомы должны, принести какие-либо жертвы, то эти жертвы будут принесены: «Структура важнее всего».
Вот что произойдет, например, если в чистый германий во время его плавки добавить атом мышьяка. Такой большой предмет, как атом мышьяка, не может находиться где-то в межатомном пространстве, и поэтому при затвердевании расплава он займет место в кристаллической решетке наравне с атомами самого германия. Но у мышьяка на внешней орбите не четыре электрона, а пять. И этот пятый электрон никак не сможет найти себе места в четкой системе межатомных связей — ведь каждый атом, который входит в решетку алмазного типа, может отдать соседям только четыре электрона. И, подчиняясь закону «Структура важнее всего», пятый электрон уйдет с орбиты в дальние странствия, а сам атом мышьяка превратится в положительный ион (рис. 12).
Рис. 12.
Обратите внимание — мы не называем этот ион дыркой. Вцепившись своими четырьмя электронами в соседей, атом мышьяка не сможет ни взять электрон со стороны, ни отдать его. Этот положительный ион — атом мышьяка — будет неподвижно стоять на месте, не участвуя в создании электрического тока. Вот почему, добавляя в германий или кремний атомы с пятью электронами на внешней орбите, мы создаем в этих полупроводниках дополнительную электронную проводимость, не увеличивая дырочной проводимости и не нарушая общего электрического равновесия кристалла.
Примеси, которые увеличивают электронную проводимость полупроводника, называются донорными примесями. Слово «донор» означает «отдающий» и говорит о том, что примесь как бы добавляет в полупроводник свободные электроны.
Обратный результат можно получить, если добавить в чистый германий (или кремний) атомы с тремя электронами на внешней орбите; например, атомы лития. Для того чтобы не показаться чужаком и не испортить структуры — «Структура важнее всего!» — такой атом поместит к себе на орбиту чужой электрон, естественно, украденный у нейтрального атома германия. А поскольку этот чужой, четвертый электрон будет для лития лишним, то атом лития превратится в неподвижный отрицательный ион. Сам же атом германия, отдавший электрон пришельцу, станет дыркой — этот атом всегда с радостью примет на свободное место в своей внешней орбите любой электрон-перебежчик.
Вывод прост: добавляя в германий или кремний атомы с тремя электронами на внешней орбите, мы создаем в этих полупроводниках дополнительную дырочную проводимость, не увеличивая электронной проводимости. И опять-таки не нарушая общего электрического равновесия (рис. 13).
Рис. 13.
Примеси, которые увеличивают дырочную проводимость полупроводника, называются акцепторными примесями. Слово «акцептор» означает «отбирающий» и говорит о том, что примесь как бы отбирает у полупроводника свободные электроны и основным типом свободных зарядов становятся дырки.
После долгих блужданий по трудным дорогам физики и химии мы получили наконец те самые бесценные материалы, которые нужны для изготовления нашего управляющего прибора, нашего скульптора. Именно эти материалы — полупроводники с электронной или дырочной проводимостью — позволят нам искусственно создать процесс для управления мощными потоками энергии с помощью слабого электрического сигнала. Прибор, в котором будет осуществляться такое управление, как вы уже, конечно, догадались, и есть полупроводниковый триод — транзистор. Но, получив наконец возможность непосредственно познакомиться с главным героем нашей книги — с полупроводниковым триодом, мы в интересах дела ненадолго отложим это знакомство и сначала выясним, как устроен и как работает полупроводниковый диод.
Глава II
ОТ ДИОДА ДО ТРИОДА