Читаем Транзисторы полностью

Постоянный ток, как известно, не проводит через конденсатор — между его обкладками находится слой изолятора. Но когда конденсатор заряжается и разряжается, в его цепи все-таки возникает кратковременный ток — заряды двигаются на обкладки (зарядный ток) или уходят с них (разрядный ток). Под действием переменного напряжения циклы заряд-разряд происходят непрерывно, и в цепи конденсатора возникает переменный ток. Ток этот возрастает с увеличением частоты: чем выше частота, тем чаще двигаются заряды «туда-обратно», тем большее их количество проходит по цепи каждую секунду.

Есть еще один способ увеличить ток: нужно взять конденсатор большей емкости. Чем больше емкость С конденсатора, тем большее число зарядов накапливается на обкладках, тем интенсивнее их движение во время заряда и разряда. Учитывая все это, конденсатор можно представить в виде некоторого условного резистора, обладающего емкостным сопротивлением xс, от которого зависит величина тока. Само же xс зависит от частоты f и емкости С. (Воспоминание № 13; формулы действительны только для переменного тока синусоидальной формы). Сопротивление xс называют реактивным — оно не потребляет мощности, а лишь влияет на величину тока.

Предположим, что в плоскостном диоде емкость рn-перехода равна 100 пф. На частоте 100 килогерц (кгц) конденсатор такой емкости ведет себя как сопротивление 16 килоом (ком). Это сопротивление намного меньше обратного сопротивления диода и сильно шунтирует его. Образно говоря, собственная емкость диода совершает «предательство» (не забывайте про стр. 26!) — создает обходной путь, который фактически делает диод ненужным, неработающим элементом цепи.

Как видите, большой прямой ток плоскостных диодов покупается довольно дорогой ценой: предельная рабочая частота этих диодов обычно не превышает 10–20 кгц. Точечные диоды хорошо работают на частотах в десятки, сотни и даже тысячи мегагерц (Мгц). На высоких частотах емкостное сопротивление точечного диода оказывается весьма большим благодаря его небольшой собственной емкости (чем меньше емкость, тем больше емкостное сопротивление). И поэтому точечный диод практически не подвергается шунтирующему действию собственного конденсатора-«предателя».

Есть еще несколько параметров полупроводникового диода, с которыми нам необходимо познакомиться. Это обратный ток и прямое напряжение, а также предельная температура, которую терпит диод. Мы не стали включать эти параметры в таблицы, потому что для многих диодов они одинаковы и таблицы оказались бы заполненными множеством одинаковых цифр.

Так, например, все германиевые диоды работают при температуре не более +60 °C. Для кремниевых диодов верхняя температурная граница значительно выше — до +100 °C (часто указывают иные величины, а именно: +70 °C и + 150 °C).

Причиной гибели диодов при высокой температуре является уже знакомый тепловой пробой. Тепловая энергия увеличивает собственные колебания атомов, как бы расшатывает их, и в результате увеличивается число электронов, покидающих внешние орбиты. Поэтому с увеличением температуры в полупроводниковом диоде растет число неосновных (собственных) зарядов, а значит, уменьшается численное превосходство основных (примесных) зарядов, на котором, собственно говоря, и основана вся деятельность pn-перехода.

Посмотрите на рис. 21. Здесь показано, как меняется характеристика диода при его нагревании. Вы видите, что с ростом температуры резко увеличивается обратный ток — происходит это именно за счет увеличения собственной проводимости полупроводника. Постепенно дело доходит до того, что обратный ток становится равным прямому, рn-переход разрушается, наступает тепловой пробой.

Рис. 21.При нагревании диода увеличивается число собственных (неосновных) зарядов в полупроводнике, увеличивается обратный ток через рn-переход.

То, что у кремниевых диодов это происходит при более высокой температуре, можно объяснить (опять-таки очень упрощенно!) следующим образом. У кремния всего три орбиты, у германия — четыре. Поэтому в атоме кремния внешняя орбита находится ближе к ядру, электроны прочнее привязаны электрическими силами к ядру и нужна более высокая температура, более сильные тепловые колебания атома, чтобы выбросить электрон с его внешней орбиты.

Для того чтобы не перегреть полупроводниковый диод, не довести его до опасной граничной температуры, пользуются охлаждающими радиаторами, например медными, алюминиевыми или стальными пластинами. Роль радиатора может выполнять и металлическое шасси, на котором монтируется схема. Радиатор должен плотно прилегать к корпусу диода: лишь в этом случае диод хорошо передает ему свое тепло. Если же нужно, чтобы корпус диода (к нему подсоединена зона n, см. рис. 14) не имел электрического контакта с металлическим радиатором (чаще всего с шасси), то между диодом и радиатором помещают тонкую слюдяную прокладку.

Перейти на страницу:

Все книги серии Шаг за шагом

Microsoft Windows SharePoint Services 3.0. Русская версия. Главы 9-16
Microsoft Windows SharePoint Services 3.0. Русская версия. Главы 9-16

В современной деловой среде все более важной становится эффективность совместной работы. Службы SharePoint – компонент Windows Server 2003, бесплатно доступный для скачивания, – помогают в решении этой задачи, предоставляя мощный набор инструментов для организации данных, управления документами, повышения эффективности бизнес-процессов и создания надежной среды взаимодействия. Эта книга научит вас использовать службы Windows SharePoint для организации совместной работы. Вы узнаете, как создавать собственные узлы SharePoint при помощи шаблонов, списки и библиотеки для хранения информации; добавлять электронные доски обсуждений, вики-узлы и блоги; настраивать рабочие области документов и собраний; использовать календари, контактную информацию и другие данные совместно с программами из пакета Microsoft Office и многое другое, что поможет рабочим группам легко взаимодействовать друг с другом.Для пользователей любого уровня подготовки, желающих самостоятельно освоить Microsoft Windows SharePoint Services 3.0.

Билл Инглиш , Ольга Лондер , Пенелопа Ковентри , Тодд Бликер

ОС и Сети, интернет / ОС и Сети / Книги по IT

Похожие книги

100 способов избежать аварии. Спецкурс для водителей категории В
100 способов избежать аварии. Спецкурс для водителей категории В

Сколько раз, сидя перед экраном телевизора, вы вздрагивали, услышав визг тормозов? К сожалению, со стороны пассажирского сиденья он звучит еще страшнее. Все мы прекрасно знаем, что, садясь за руль, мы несем ответственность не только за себя и своих спутников, но и за всех участников дорожного движения.Так как же вести себя, если вы понимаете, что ситуация вышла из-под контроля и велика вероятность аварии?Александр Каминский, изучив часто случающиеся аварии, на страницах своей книги поделился опытом и секретами, как их избежать, а также подробно описал экстренные действия во время нештатных ситуаций.Книга написана живым и доступным языком и предназначена для широкого круга автовладельцев с различным стажем вождения. Желаем вам приятного чтения и надеемся, что чужой опыт, описанный в этой интересной книге, никогда не станет вашим!

Александр Юрьевич Каминский

Автомобили и ПДД / Техника