Читаем Транзисторы полностью

Рис. 37.В коллекторную цепь можно включить большое сопротивление нагрузки и получить на нем большое выходное напряжение.

Давайте пока не обращать внимания на сравнительно небольшой ток базы Iб. Будем считать, что в нашей схеме коэффициент α = 1, то есть эмиттерный ток Iэ на все сто процентов используется для создания коллекторного тока Iк. Иными словами, любое изменение тока в цепи эмиттер — база (входная цепь) вызывает точно такое же изменение тока в цепи база — коллектор (выходная цепь). Это значит, что если, например, эмиттерный ток уменьшится на 5 ма, то на 5 ма уменьшится и коллекторный ток; увеличится Iэ на 20 ма, и на те же 20 ма возрастет и Iк. Одним словом, в эмиттерной и коллекторной цепи будут согласованно меняющиеся, всегда одинаковые по величине токи.

Эта радостная весть может вызвать весьма грустные мысли. Действительно, после долгих поисков, после странствий по океанам многих наук мы наконец построили прибор, который из слабого переменного тока делает… точно такой же слабый переменный ток! А где же усиленный сигнал? Где обещанная мощная копия?

Для беспокойства пока нет никаких оснований. То, что на выходе транзистора ток такой же, как и на его входе, еще ни о чем плохом не говорит: чтобы судить об усилении, нужно сравнивать мощности входного и выходного сигналов. А мощность — это не только ток, это еще и напряжение: P = U·I.

Потребителем усиленного сигнала является резистор Rп и именно на нем выделяется мощность усиленного сигнала или иначе выходная мощность транзисторного усилителя Pвых. Выходная мощность может использоваться по-разному, да и сама нагрузка усилительного каскада может быть различной (вместо Rн, например, может быть включен громкоговоритель, и тогда Pвых расходуется на создание звука). Однако какой бы ни была реальная нагрузка и на что бы ни расходовалась выходная мощность, нагрузку эту почти всегда можно представить в виде резистора Rн, а выходную мощность — как произведение переменной составляющей коллекторного тока Iк~ на переменную составляющую Uн~ напряжения, действующего на сопротивление нагрузки:

Pвых = Uн~·Iк~

Обратите внимание на то, что выходная мощность определяется не током и напряжением «вообще», а именно переменными составляющими тока и напряжения. Дело в том, что в коллекторной цепи так же, как и в эмиттерной, протекает пульсирующий ток. Конечно, батареи Б и Бк создают только постоянные токи Iэ и Iк, но с появлением сигнала токи начинают изменяться по величине, становятся пульсирующими.

Пульсирующий коллекторный ток можно довольно просто разделить на постоянную и переменную составляющие. Например, с помощью фильтров, которые применялись нами в выпрямителе и детекторе для разделения постоянных и переменных составляющих (рис. 27—6, 19). Совершенно ясно, что постоянные составляющие коллекторного тока Iк= и напряжения на нагрузке Uн= нам совсем не нужны: выходной сигнал — это переменный ток и переменное напряжение, в нашем примере Iк~ и Uн~. И, не задумываясь пока о конкретных способах выделения этих переменных составляющих, мы только их и учитываем при подсчете выходной мощности, делая вид, что постоянных составляющих Iк= и Uн= просто не существует.

Поскольку мы договорились, что коллекторный ток равен эмиттерному, то, значит, равны и их переменные составляющие. Одна из них Iэ~ определяет мощность входного сигнала, другая Iк~ — мощность выходного сигнала. Теперь вопрос об усилительных способностях транзистора можно решить только одним способом: сравнить переменное напряжение Uсиг входного сигнала и выходное переменное напряжение Uвых (так мы будем в дальнейшем называть переменную составляющую Uн~). Если окажется, что Uвых  больше, чем Uсиг, то, значит, выходная мощность больше входной и, следовательно, транзистор усиливает. Чем большее значение Uвых нам удастся получить, тем большим будет и усиление сигнала.

К эмиттерному переходу приложено напряжение усиливаемого сигнала. Если мы захотим подсчитать это напряжение, то нужно будет воспользоваться уже знакомой формулой закона Ома — Uсиг= Iэ~·Rвх. Здесь Rвх— это так называемое входное сопротивление транзистора, сопротивление, которое входной сигнал встречает со стороны эмиттерного перехода.

Вскоре мы подробно выясним, от чего зависит и чему равно входное сопротивление. А пока ограничимся лишь общим выводом: входное сопротивление Rвх очень мало. В общих чертах, по-видимому, ясно, что это должно быть именно так потому, что входное сопротивление — это, по сути дела, сопротивление эмиттерного рn-перехода, а этот переход благодаря смещению всегда включен в прямом, проводящем направлении. И, как всякий диод, он обладает небольшим прямым сопротивлением.

То, что для подсчета входного напряжения Uсиг мы пользуемся входным сопротивлением транзистора Rвх, по-видимому, требует некоторых пояснений.

Перейти на страницу:

Все книги серии Шаг за шагом

Microsoft Windows SharePoint Services 3.0. Русская версия. Главы 9-16
Microsoft Windows SharePoint Services 3.0. Русская версия. Главы 9-16

В современной деловой среде все более важной становится эффективность совместной работы. Службы SharePoint – компонент Windows Server 2003, бесплатно доступный для скачивания, – помогают в решении этой задачи, предоставляя мощный набор инструментов для организации данных, управления документами, повышения эффективности бизнес-процессов и создания надежной среды взаимодействия. Эта книга научит вас использовать службы Windows SharePoint для организации совместной работы. Вы узнаете, как создавать собственные узлы SharePoint при помощи шаблонов, списки и библиотеки для хранения информации; добавлять электронные доски обсуждений, вики-узлы и блоги; настраивать рабочие области документов и собраний; использовать календари, контактную информацию и другие данные совместно с программами из пакета Microsoft Office и многое другое, что поможет рабочим группам легко взаимодействовать друг с другом.Для пользователей любого уровня подготовки, желающих самостоятельно освоить Microsoft Windows SharePoint Services 3.0.

Билл Инглиш , Ольга Лондер , Пенелопа Ковентри , Тодд Бликер

ОС и Сети, интернет / ОС и Сети / Книги по IT

Похожие книги

100 способов избежать аварии. Спецкурс для водителей категории В
100 способов избежать аварии. Спецкурс для водителей категории В

Сколько раз, сидя перед экраном телевизора, вы вздрагивали, услышав визг тормозов? К сожалению, со стороны пассажирского сиденья он звучит еще страшнее. Все мы прекрасно знаем, что, садясь за руль, мы несем ответственность не только за себя и своих спутников, но и за всех участников дорожного движения.Так как же вести себя, если вы понимаете, что ситуация вышла из-под контроля и велика вероятность аварии?Александр Каминский, изучив часто случающиеся аварии, на страницах своей книги поделился опытом и секретами, как их избежать, а также подробно описал экстренные действия во время нештатных ситуаций.Книга написана живым и доступным языком и предназначена для широкого круга автовладельцев с различным стажем вождения. Желаем вам приятного чтения и надеемся, что чужой опыт, описанный в этой интересной книге, никогда не станет вашим!

Александр Юрьевич Каминский

Автомобили и ПДД / Техника