Прослеживается четкая разница между первыми определениями, которые опираются на такие неопределенные понятия, как часть, ширина, длина и так далее, и остальными, основанными на уже рассмотренных геометрических понятиях, например круг, центр, диаметр, трехсторонние фигуры и так далее. Аристотель утверждает, что существование некоторых понятий и объектов очевидно: это «линия», «прямая линия» и «величина» в геометрии и «единица» в арифметике. Группа определений не всегда выделяется последовательно. Так, в определении диаметра мы читаем: «Эта прямая делит круг на две равные части», но это является ее свойством, которое необходимо доказать, а не определением.
Некоторые определения книги 1
1. Точка есть то, что не имеет частей.
2. Линия же — длина без ширины.
3. Концы линии — точки.
4. Прямая линия есть та, которая равно расположена по отношению к точкам на ней.
8. Плоский угол есть наклонение друг к другу двух линий, в плоскости встречающихся друг с другом, но не расположенных по одной прямой.
9. Когда линии, содержащие угол, прямые, то угол называется прямолинейным.
10. Когда прямая, восставленная на другой прямой, образует рядом углы, равные между собой, то каждый из равных углов есть прямой, а восставленная прямая называется перпендикуляром к той, на которой она восставлена.
15. Круг есть плоская фигура, содержащаяся внутри одной линии, окружности, на которую все из одной точки внутри фигуры падающие на окружность прямые равны между собой.
16. Центром же круга называется эта точка.
17. Диаметр круга есть любая прямая, проведенная через центр и ограничиваемая с обеих сторон окружностью круга, она же и рассекает круг пополам.
19. Прямолинейные фигуры есть те, которые содержатся между прямыми, трехсторонние — между тремя, четырехсторонние — между четырьмя, многосторонние же — которые содержатся между более чем четырьмя прямыми.
20. Из трехсторонних фигур равносторонний треугольник есть фигура, имеющая три равные стороны, равнобедренный — имеющая только две равные стороны, разносторонний — имеющая три неравные стороны.
21. Кроме того, из трехсторонних фигур прямоугольный треугольник есть имеющий прямой угол, тупоугольный же — имеющий тупой угол, остроугольный — имейощий три острых угла.
22. Из четырехсторонних фигур квадрат есть та, которая и равносторонняя, и прямоугольная, прямоугольник же — разносторонняя и прямоугольная, ромб — равносторонняя, но не прямоугольная, ромбоид (параллелограмм) — имеющая противоположные стороны и углы, равные между собой, но не являющаяся ни равносторонней, ни прямоугольной.
23. Параллельные прямые — это прямые, которые, находясь в одной плоскости и будучи продолжены в обе стороны неограниченно, ни с одной стороны друг с другом не встречаются.
Мы увидели, что определения не подразумевают факт существования определяемого объекта,— его надо установить. Для этого необходимо решить задачу вида «существует ли такой предмет, как...». В сочинении Евклида для построения геометрических объектов используются только прямые и окружности, других инструментов не дается. Следовательно, единственные существующие точки — те, которые возникают в местах пересечения этих линий.
После того как объект построен и задача решена, нужно убедиться, что он именно такой, как нужно, то есть построение соответствует характеристикам, данным в определении. Необходимо сформулировать теорему. Теоремы «устанавливают существование как данное»; они говорят «вот объект» и констатируют, что между различными утверждениями есть логическая связь.
Для решения задач необходим анализ, то есть знание некоторых базовых сведений, которые позволяют построить объект. Например, если дана сторона АВ, нужно подумать, какие инструменты потребуются для построения равностороннего треугольника. Для этого можно представить его уже построенным и рассмотреть, что связывает все его части (см. построение пятиугольника в главе 4). В теоремах же главное — синтез от постулатов к требуемому результату. Первое предложение первой книги, несмотря на всю его простоту, позволяет нам проследить разницу между анализом и синтезом.
Части теоремы
Protasis (утверждение)
Построить равносторонний треугольник на заданной прямой.
Ekthesis (изложение)
Дана прямая АВ.
Diorismos (ограничение)
Необходимо построить равносторонний треугольник на АВ.
Проведем окружность АВ с центром А и радиусом АВ (постулат 3).
Проведем окружность ВА с центром В и радиусом ВА (постулат 3).
Проведем прямые СА и СВ из точки С, в которой пересекаются две окружности (постулат 1).
Apodeixis (доказательство)