Поскольку точка А — центр окружности АВ, СА равен АВ (определение 15). Аналогично, если В — центр окружности ВА, ВС равен ВА (определение 15). Но два объекта, равные одному и тому же объекту, равны между собой (общее понятие 1). Таким образом, СА также равен СВ. Следовательно, прямые АВ, СВ и СА равны.
Sumperasma (заключение)
Треугольник АВС равносторонний, и мы построили то, что требовалось. Ч. Т. Д. (что и требовалось доказать).
В этом предложении есть все необходимое (см. таблицу на следующей странице). Для построения используются постулаты 3 и 1. В доказательстве используется определение 15, общее понятие 1 и элементарная логика. Представив изначально равносторонний треугольник ЛВС, мы получаем множество отправных точек для построения и доказательства. Исходя из этого «идеального» образа можно провести синтетическое доказательство, поскольку в нем стороны равны и образуют треугольник. В другом случае, например с правильным пятиугольником, это будет гораздо сложнее.
Хотя у циркуля нет памяти, по первому постулату возможно «от данной точки отложить прямую, равную данной прямой» и таким образом добавлять равные отрезки, необходимые для построения правильных фигур. Также возможно разделить отрезок на меньшие части.
Проанализируем еще два доказательства, чтобы рассмотреть логико-дедуктивный метод «Начал».
Книга I, предложение 5.
В равнобедренных треугольниках углы у основания равны между собой (см. рисунок).
1. Дан равнобедренный треугольник ΔABG с равными сторонами АВ и AG (определение 20).
2. Продлим их на равные отрезки BZ и GH соответственно (общее понятие 2, предложение 2).
3. Соединим Z c G, а Н с В (постулат 1).