Наблюдение за реакцией разрезания ДНК в пробирке требовало высокоточного метода регистрации, поскольку увидеть непосредственно факт разрезания ДНК невозможно. Двойная спираль ДНК в 50 “букв” имеет длину всего 17 нанометров, или 17 миллиардных частей метра, а это приблизительно одна тысячная толщины человеческого волоса. Даже самый мощный микроскоп неспособен нам этого показать, поэтому Мартин и Кшиштоф использовали два любимых инструмента биохимиков, изучающих нуклеиновые кислоты: радиоактивный фосфор и гель-электрофорез. В новых опытах к концам молекул ДНК с помощью химических реакций присоединялись атомы радиоактивного фосфора, и в результате эти молекулы начинали светиться на рентгеночувствительной пленке. Затем электрический ток высокого напряжения прогонял все эти молекулы ДНК через большой брусок желеобразного материала, который работал как молекулярное сито, сортирующее молекулы по размеру. После просвечивания геля рентгеновским излучением на нем становились видны участки (полосы) сигнала, в том случае если ДНК была разрезана Cas9: одна полоса от полноразмерной ДНК и другая – от ДНК, поделенной на два фрагмента.
В дальнейшем Мартин показал, что обе нити ДНК разрезаются белком Cas9 в одном и том же месте относительно РНК CRISPR. Что важно, РНК CRISPR и молекулы трансактивационной РНК оставались неизменными на протяжении эксперимента и потому могли быть использованы белком Cas9 повторно для определения последовательности ДНК, подлежащей разрезанию.
Проанализировав эти результаты, мы поняли, что у нас есть ключевые компоненты машины, разрезающей ДНК, – механизма, позволяющего
Я ликовала, когда мы получили эти результаты, но при этом меня волновало множество новых вопросов, ответы на которые нам хотелось узнать как можно скорее. Чтобы понять, за счет чего конкретно фермент Cas9 способен разрезать ДНК “по наводке” РНК, нам нужно было определить, какой участок белка обеспечивает его режущую функцию. Чтобы доказать, что разрезание ДНК специфично и требует совпадения между РНК CRISPR и последовательностью ДНК, нам нужно было изменять последовательность ДНК “буква” за “буквой” и показать, что разрезания не происходит, если последовательности РНК и ДНК совпадают не полностью. А чтобы выявить, каким образом работают молекулы РНК CRISPR и трансактивационной РНК, нам предстояло методически убирать разные фрагменты каждой из молекул и определять, без каких из них невозможно обойтись.
Мартин и Кшиштоф работали над решением этих вопросов не покладая рук, и вскоре стала вырисовываться удивительная картина: Cas9 может присоединяться к двойной спирали ДНК, разделять две нити для формирования новой спирали между РНК CRISPR и одной из нитей ДНК, а затем использовать две структуры с нуклеазной активностью, чтобы одновременно разрезать обе нити ДНК, создавая двуцепочечный разрыв. В зависимости от последовательности связанной с ним молекулы РНК Cas9 нацеливается практически на любую произвольную последовательность ДНК и разрезает ее. По сути, молекула РНК CRISPR действует подобно набору GPS-координат, точно наводя Cas9 на нужное место в длинной молекуле ДНК в соответствии с совпадением “букв” РНК CRISPR и ДНК. Это по-настоящему программируемая нуклеаза, которая могла бы нацеливаться на любую произвольную последовательность ДНК, используя все те же правила спаривания оснований – А с Т, Г с Ц и так далее. Для любой двадцатибуквенной последовательности, которую содержит РНК-проводник, Cas9 находит подходящую пару в ДНК и затем разрезает ее.
Функция Cas9 в битве между бактериями и вирусами теперь казалась совершенно объяснимой. Снабженный запасом молекул РНК, взятых из массива CRISPR, в котором были собраны кусочки ДНК фагов, Cas9 можно мгновенно перепрограммировать на разрезание соответствующих участков вирусных геномов. Он оказался совершенным бактериальным оружием: снаряд, который умеет находить вирусы, а потом поражать цель – быстро и с невероятной точностью.