Наши исследования показывают, что в сфере продаж крупные компании используют машинное обучение по трем направлениям. Каждое из них прибавляет к человеческому интеллекту и интуиции алгоритмическую строгость, создавая тем самым новую динамичную формулу. Руководители надеются, что этот способ позволит им увеличить продажи. Первое направление использует научный подход (базируется на имеющихся данных и прозрачных процессах) при взаимодействиях в ходе продаж. Второе дает возможность проводить эксперименты на основе имеющихся данных и маркетинга. Третье направление использует достижения науки, чтобы высвободить больше времени собственно для продаж за счет автоматизации выполнения административных заданий. Зачастую именно эта рутина мешает непосредственной работе с клиентами, поиску потенциальных клиентов и закрытию сделок. При использовании любого из этих вариантов появляется возможность разработать и внедрить быстрые и научно обоснованные процессы для получения более высоких доходов.
До появления машинного обучения решения принимались на основе изучения статических баз данных, анализа статистики за прошлые периоды, а также опыта и интуиции управленцев – с постепенным, поэтапным повышением производительности. Благодаря новым технологиям управление может осуществляться непрерывно на основе данных, обрабатываемых в режиме реального времени. Появляется возможность быстро формулировать, проверять и пересматривать гипотезы – так возникает новый тип рабочего процесса, который может оказаться значительно более эффективным. В ходе нашего опроса 38 % респондентов отметили машинное обучение как перспективный метод улучшения ключевых показателей эффективности продаж (выявление новых возможностей, продажи сопутствующих товаров и услуг, изменение времени торгового цикла) в два раза или даже больше, а еще 41 % – в пять и более раз.
Издавна в сфере продаж местный представитель фирмы мог встречаться с потенциальными клиентами лицом к лицу и считывать невербальные сигналы, например одобрительные кивки или хмурые взгляды. На основании этой информации он определял свои следующие шаги. Но в цифровом мире, где физические неформальные сигналы считывать невозможно, продажи становятся непрозрачным процессом – его трудно разложить на отдельные составляющие. И если планы срываются, поиск ошибок, которые можно было бы исправить при последующих попытках, сильно затрудняется.
Так что хорошо было бы помочь продавцу уверенно определять момент, когда потенциальный покупатель готов совершить покупку. И вот теперь компания под названием 6sense («Шестое чувство») предлагает на рынке продукт, который формирует цифровые прогностические сигналы в отношении покупки. Эта технология помогает специалистам по продажам определять оптимальное время для обращения к потенциальным покупателям. Путем анализа онлайн-поведения посетителей сайта клиента, а также данных из различных общедоступных источников, включая социальные сети, 6sense предоставляет клиенту панораму интересов потенциальных покупателей и информацию о сроках готовности того или иного клиента к покупке (если ее вообще стоит ожидать).
Компания анализирует большие массивы информации с сайтов, используя машинное обучение для повышения точности своих прогнозов. Обладая точными данными, команды продавцов могут быстрее определять перспективы, а определение целевой аудитории выполняется быстро и с высокой вероятностью успеха. Большие объемы данных о потенциальных покупателях позволяют специалистам по продажам тестировать различные подходы, тратя больше времени на тонкую настройку, вместо того чтобы пытаться реализовать призрачные возможности.
Машинное обучение может также обеспечить более эффективное А/В-тестирование сайтов, устраняя узкие места, которые нередко обусловлены экспериментами в сфере продаж. Меньшее количество таких уязвимых точек означает более высокую скорость: примерно 30 % респондентов в нашем опросе утверждали, что им удалось ускорить процессы продаж в два раза или даже больше, а еще 30 % сообщили об увеличении не менее чем в пять раз. Одним из программных инструментов, позволяющих продавцам и маркетологам быстро модифицировать сайты для реализации множества тестов A/B, является Adobe Target. На основе данных, получаемых при взаимодействиях с сайтами, алгоритмы машинного обучения этой программы находят и предлагают оптимальный контент для настройки, а также помогают проверять предположения после разработки соответствующих тестов.