Но если литий-ионные батареи так неустойчивы, почему же они так популярны? Парадокс объясняется просто. Дело, во-первых, в том, что по совокупности качеств Li-Ion лучше других вписывается в эксплуатационные требования, предъявляемые современной техникой. Скажем, в микроэлектронике такие батареи обеспечивают как минимум день работы, отсутствие так называемого эффекта памяти (свойственного никель-металл-гидридным элементам), умеют быстро подзаряжаться и служат около трёх лет — срок, за который большинство мобильных устройств устаревает и морально, и технически. И, во-вторых, вариантов нет: в то время как сама электроника движется вперёд, аккумуляторы топчутся на месте. Ничего лучше Li-Ion для массового рынка пока не придумано, несмотря на то что альтернатива нужна и микроэлектронике, и автопрому, и авиастроению, и даже энергетике (где растёт потребность в локальных системах хранения электричества, см. «Элон Маск и его Солнечный Город»).
Образно выражаясь, ситуация с аккумуляторами напоминает сейчас большой барьер, у которого скопилась масса народу. Десятки, если не сотни научных групп по всему миру пытаются преодолеть его, работая по множеству направлений. Большинство обнадёживающих новостей уже привычно приходят из Северной Америки. Американская Imprint Energy заменила литий цинком, благодаря чему аккумулятор можно делать сверхтонким и гнущимся (вплоть до сотен микрон на плёночной подложке). В университете Кеттеринга в Канаде сделали ставку на алюминий, надеясь и по ёмкости, и по цене, и по безопасности обойти литий-ионные батареи. В Лаборатории Оак-Ридж от лития отказываться не стали, но экспериментируют с наночастицами, применение которых позволяет поднять на порядок ёмкость и уменьшить пожароопасность. Так же и стартап Seeo, поддержанный в том числе Google, ставит на Li-Ion, но с менее опасным электролитом и более лёгкой и дешёвой конструкцией электродов. И даже само американское Министерство энергетики выделило 120 млн долларов на амбициозный проект с целью «5-5-5″: за пять лет сделать аккумуляторы впятеро мощней и впятеро дешевле.
Я не искал специально, а попросту надёргал сообщений из свежих новостных лент. Но можете мне поверить, такая картина в новостях каждый день на протяжении как минимум уже нескольких лет. Разработок много, они выходят из лабораторий или близки к этому — и ничего удивительного, что оптимисты смотрят в будущее уверенно. Например, уже упоминавшийся Элон Маск заинтересован в прорыве «аккумуляторного барьера» чуть ли не больше любого другого предпринимателя на Земле: Маску принадлежат успешные космический (SpaceX, см. «Первые на орбите»), автомобильный (Tesla Motors, см. «Как сломать Tesla Roadster») и солнечно-энергетический бизнесы — и везде нужны ёмкие, безопасные, дешёвые аккумуляторы. Так вот, Маск уверен, что в ближайшие десять лет аккумуляторный мир ждёт резкое падение цен, и это спровоцирует новую техническую революцию, которая перетряхнёт микроэлектронику, автомобильную, авиа-, космическую промышленность до самых основ.
Интрига в том, что ни Маск, ни кто-либо ещё, конечно же, не знают, ни где именно произойдёт прорыв, ни кто его устроит. И в этом смысле удивляет полное отсутствие новостей из российских институтов. Пусть мы отстали в коммерческом ракетостроении, но химия электролитов не выглядит неподъёмной задачей даже для небольших научных групп. Тем более что задача эта — достойная по всем параметрам. Так почему за неё не берутся наши студенты, наши аспиранты?
В статье использована иллюстрация Razor512
Анатолий Левенчук о конференции по робототехнике в Сколково