Предположим, вы хотите эмпирически определить, как часто на двух костях в сумме выпадает 7. Основной принцип тут такой: чем больше раз вы бросите кости, тем больше размер выборки и тем точнее окажется ваш прогноз, сколько раз сумма будет равна 7.
Если бросить кости 20 раз, то с вероятностью 95 % количество 7 будет в интервале от 1 до 6. Это 6 возможных вариантов – более 25 % от общего числа вариантов.
Если бросить кости 100 раз, то с вероятностью 95 % количество семерок будет в интервале от 11 до 25: всего 15 % от возможного числа вариантов.
Если бросить кости 1000 раз, то с вероятностью 95 % количество семерок будет в интервале от 140 до 190. Число вариантов сузилось до 4,6 % от общего числа.
То же самое произойдет для любой другой суммы: число двоек будет все больше приближаться к 1/36, как и две шестерки; такая закономерность сохранится и для всех промежуточных чисел.
Включая в свою выборку все большее число бросков, вы будете все ближе к «правильному» распределению.
* Тех, кто дочитал до этого места, ждет небольшой приз. Вас могут позабавить проблемы, возникшие у Джо Уикса (этот доброхот помогал Великобритании пережить локдаун физкультурными занятиями на ютубе, которые он проводил ежедневно из своей гостиной). Он пытался внести в выпуски элемент случайности – присвоил упражнениям номера от 2 до 12 и бросал кости, но был неприятно удивлен, что упражнение № 7 («бёрпи») приходилось делать намного чаще, чем № 2 (прыжок звездой). Поняв свою ошибку, Уикс заменил кости рулеткой.
С ростом мужчин у вас получилось простое распределение вокруг среднего значения. Если вы действительно выбираете мужчин случайным образом, то чем больше вы их измерите, тем больше ваша выборка будет напоминать популяцию в целом, точно так же как в примере с костями из врезки.
Но, предположим, вы хотите выяснить что-то другое – например, выздоравливают ли пациенты, принимающие определенное лекарство, быстрее не принимающих. В этом случае вы измеряете не одну величину, а две: насколько быстро выздоравливают те, кто принимает лекарство, и те, кто его не принимает.
Вы хотите узнать, есть ли различия между этими группами. Однако тут, как и в случае с измерением роста, бывают случайные отклонения. Если взять двух пациентов и одному давать лекарство, а другому – нет, то принимающий лекарство может выздороветь быстрее просто за счет более крепкого здоровья.
Поэтому вы берете целый коллектив больных и случайным образом разделяете его на две группы: одной даете лекарство, а другой – плацебо. Затем вычисляете среднее время, за которое идет на поправку каждая из них, точно так же как вы вычисляли средний рост мужчин. По сути, вы делаете то же самое: изучаете выборку из одной популяции (тех, кто принимал лекарство) и другой (тех, кто не принимал). Если окажется, что первая в среднем выздоравливает быстрее, то логично предположить, что лекарство ускоряет выздоровление.
Беда в том, что здесь, как и при измерении роста, притаилась опасность: в первой группе случайно окажутся все более здоровые люди или по крайней мере значительная их часть. Тогда создастся впечатление, что лекарство ускоряет выздоровление, хотя на самом деле эти пациенты и так поправились бы быстрее.
Конечно, чем больше будет ваша выборка, тем меньше вероятность, что такие случайные вариации повлияют на результат. Вопрос: сколько нужно изучить пациентов для надежной оценки? Ответ: бывает по-разному.