Это хорошо иллюстрируется графиком. Если верна нулевая гипотеза, то пик кривой будет возле среднего значения – большинство людей окажется в середине, оттеснив на края тех немногих, кто выполнит тест очень хорошо или очень плохо. Сама кривая будет похожа на кривую нормального распределения из главы 3. При этом среднее значение и график кривой окажутся похожими у обеих групп (тех, кто прочитал книгу, и тех, кто этого не сделал).
Если же верна альтернативная гипотеза, то средний балл читателей будет выше среднего балла другой группы и кривая распределения для этой группы сместится вправо.
Но даже если верна нулевая гипотеза и книга не оказывает никакого эффекта; если – внезапно – окажется, что обе группы одинаково хорошо разбираются в статистике, все равно останется одна проблема – вам не избежать случайных вариаций. У кого-то будет просто неудачный день. Вспомните фильм «Осторожно! Двери закрываются» – Гвинет Пэлтроу в одной вселенной пропускает свой поезд, опаздывает на наш тест, расстраивается и сдает его плохо; а в другой – приходит вовремя, блестяще отвечает на вопросы и влюбляется в Джона Ханну. Пунктуальность и душевное равновесие, вероятно, не сделают из девушки эксперта по статистике, однако благоприятно отразятся на результатах теста. Есть некоторая (пусть и небольшая) доля случайности в том, насколько хорошо каждый участник выполнит задания.[12]
Если несколько не читавших книгу выполнят тест очень плохо, а несколько прочитавших – очень хорошо, это может заметно изменить среднее значение – покажется, что читатели в общем проходят тест намного лучше.
Итак, представим, что по какой-то причине ваши результаты говорят, что читатели лучше справляются с тестом. Теперь важно узнать, насколько вероятно получить такие (или еще более экстремальные) результаты, если верна ваша нулевая гипотеза – чтение книги не влияет, а все вариации случайны. Это и называется проверкой достоверности.
Нет конкретного значения, при котором абсолютно ясно, что нулевая гипотеза неверна: теоретически даже самые сильные различия могут оказаться случайными. Но чем больше разница, тем меньше шансов, что это случайно. Ученые измеряют шансы случайного совпадения с помощью вероятности, или
Чем менее правдоподобна случайность какого-нибудь события, тем меньше
Во многих науках принято считать, что если
Предположим, что при тестировании средний балл у людей, прочитавших книгу, действительно оказался выше. Если
Статистическая значимость сбивает с толку даже ученых. Исследование 2002 года показывает, что 100 % студентов-психологов и, хуже того, 90 % их преподавателей неправильно трактуют этот термин. В другом исследовании выяснилось, что в 25 из 28 рассмотренных учебников по психологии есть хотя бы одна ошибка в данном определении.
Давайте же разберемся с некоторыми возможными заблуждениями. Во-первых, важно помнить, что статистическая значимость – понятие условное. Нет ничего магического в числе 0,05. Вы можете взять за основу другое: меньшее, тем самым объявляя недостоверными большее число результатов (отнеся их к категории случайных), или большее, расширяя границы статистически значимых данных. Чем выше планка, тем выше риск ложноположительных результатов, чем ниже – тем выше риск ложноотрицательных. Ужесточив критерий, мы можем подумать, что чтение книги никак не сказывается, хотя на самом деле это не так. Ну и, конечно, наоборот.
Во-вторых, статистически значимый результат не обязательно значим в обыденном смысле. Например, если в группе тех, кто книгу не читал, средний балл – 65, а в другой – 68, то результат вполне может считаться статистически значимым, но для вас он вряд ли важен. Статистическая значимость какого-то результата характеризует вероятность его случайного получения, а не его важность.
И в-третьих: