Зато как читателя – человека, стремящегося разобраться в мире и научиться справляться со всеми рисками и трудностями, – вас не очень волнует, есть ли между двумя вещами статистически значимая связь: ее наличие или отсутствие представляет для вас не более чем интеллектуальный интерес. Например, вы предпочитаете читать в постели перед сном электронную книгу вместо бумажной, чтобы не зажигать свет и не мешать спать партнеру. Вам нет дела, есть ли связь, но важно, насколько она велика.
Насколько велик эффект чтения с экрана перед сном? Совсем невелик. Участников эксперимента просили читать книги – электронные или бумажные – по четыре часа (четыре часа!). Никто не предупреждал, что «чтение с экрана перед сном может оказаться смертельным», и в те вечера, когда испытуемые пользовались электронными книгами, они засыпали в среднем на десять минут позже. Возможно, ежедневная потеря десяти минут сна и имеет значение, но кто же перед сном так много читает?
Интересно, что позже более масштабное исследование молодежи пришло к тем же выводам: корреляция между чтением с гаджетов и сном есть, но небольшая. Лишний час экранного времени приводил к потере от трех до восьми минут сна. Возможно тут скрывается серьезный разброс – на большинство детей и подростков такое чтение никак не влияет, зато на некоторых влияет очень сильно. И все-таки нет ощущения, что отказ от гаджетов в вечернее время сильно скажется на продолжительности сна у британцев.
Было бы замечательно, если бы СМИ обсуждали не только статистическую значимость, но и размер эффекта. Стоит, не вдаваясь в технические детали, просто сказать, что «четыре часа чтения с экрана приводят к потере примерно десяти минут сна», и люди смогут сами распорядиться этой информацией и решат, критична ли такая потеря. А читателям стоило бы не просто искать зависимости (вызывает ли поедание бекона рак?), но и оценивать их масштаб (если я буду 20 лет ежедневно есть бекон, насколько повысится вероятность того, что я заболею раком?). Если в статье об этом не упоминается, скорее всего, эффект ничтожен и история не такая интересная, как кажется на первый взгляд.
Глава 7
Искажающие факторы
В последние несколько лет не утихают споры о вейпинге. Большинство некоммерческих организаций по борьбе с табакокурением и онкологическими заболеваниями считают, что вейп помогает бросить сигареты, но некоторые люди уверены, что он вреден или приучает к курению. В 2019 году даже сообщалось: дети, которые курят электронные сигареты, с большей вероятностью начнут употреблять марихуану.
Это утверждение опиралось на статью из журнала
Мы только что обсуждали размеры эффекта – здесь он кажется реально большим. В следующей главе мы поговорим о том, как трудно выявлять причинно-следственную связь, но в данном примере точно есть повод для беспокойства.
Однако когда видишь сильную корреляцию между двумя явлениями, в данном случае вейпингом и употреблением марихуаны, стоит задуматься: нет ли еще чего-то третьего, коррелирующего с обоими? Это что-то называется искажающим фактором.
Вот пример, чтобы было понятнее. В мире наблюдается корреляция между долей смертей, связанных с ожирением, и объемом углекислого газа, ежегодно выделяемым в атмосферу.
Следует ли из этого, что углекислый газ делает людей толстыми? Вряд ли. Скорее дело в том, что мир богатеет, а становясь богаче, люди тратят больше денег и на высококалорийную пищу, и на товары и услуги, связанные с выделением углекислого газа, например автомобили и электричество. это учесть, станет понятным: никакой связи между выделением углекислого газа и ожирением, скорее всего, нет. Однако важную роль играет третья переменная – ВВП.
Другой классический пример – мороженое и утопленники. В те дни, когда растет продажа мороженого, тонет больше людей, хотя очевидно, что отдыхающие идут ко дну не из-за него. Просто мороженое приятно съесть в жаркий день, вот и продажи растут, и плавать тоже хорошо в жару, а плавание, к сожалению, иногда заканчивается утоплением. Стоит учесть влияние температуры – как говорят статистики, проконтролировать этот фактор, – и связь пропадет. То есть вы не увидите зависимости, если посмотрите на продажу мороженого и число смертей на воде только в холодные или жаркие дни.
Это важно, когда обсуждаешь размер эффекта. Иной раз кажется, что одна переменная сильно зависит от другой, как, например, курение марихуаны от вейпинга. Но подчас трудно определить, реальна ли эта связь или видимая зависимость объясняется влиянием какой-то третьей величины – искажающего фактора.