Логика сама по себе не приводит к решению. Найти его можно благодаря проницательности, умению проводить дополнительные линии, не отмеченные на исходной иллюстрации, и связывать новые линии с различными элементами задачи. Логика предоставляет нам выбор из множества возможных действий, но не подсказывает, какое из них следует выбрать.
Способностью к математическому творчеству обладают не все, точно так же, как не все обладают способностями к искусству, музыке, архитектуре или науке. Однако многие часто объясняют счастливым озарением умение увидеть то, что не приводится в исходной формулировке задачи и что сложно себе представить.
Да, счастливые озарения существуют, но они не являются уделом гениев, и не все задачи решаются исключительно благодаря озарениям. Как вы увидите далее, эти озарения, равно как и поиск взаимосвязей между элементами задачи, — плод длительного и упорного труда. Как найти среди множества взаимосвязей между исходными данными те, которые приведут к решению? Именно в правильном выборе подобных «благоприятных возможностей» и заключается математическое творчество.
В гуманистическом представлении математика рассматривается как исторический, социальный и культурный продукт. В самом деле, многие открытия в математике сделаны точно так же, как и в других науках. С помощью «предположений и опровержений», по словам Имре Лакатоса, математик прорубает дорогу в джунглях, обходит препятствия и постепенно, шаг за шагом, от одного контрпримера к другому, движется к формулировке теоремы. Математические теории доказываются с помощью безупречных логических рассуждений, которые остальному миру напоминают ровную и безопасную дорогу, ведущую прямо в пункт назначения.
Однако для строительства этой магистрали необходимы и другие, на первый взгляд незаметные, факторы, в частности эксперимент, интуиция и аналогия. Вновь процитируем слова Херша:
Математические знания создаются по итогам критической проверки результатов, представленных членами научного сообщества, однако истоки этих знаний лежат в практике и в ощущениях, подобных тем, что испытывает любой человек, взаимодействуя с окружающей средой. Такая «натуралистическая» точка зрения, как вы увидите на страницах этой книги, допускает возможность совершения математических открытий в сферах, никак не связанных с наукой.
Взгляд на математику как на продукт культуры, в котором, как и в любом другом продукте культуры, возможны неточности, а основы которого носят эмпирический характер, носит название «социальный конструктивизм». Эта точка зрения близка взглядам уже упомянутых нами авторов, в частности Лакатоса, Дэвиса и Херша.
Процитируем одного из наиболее выдающихся представителей этой школы, американца Пола Эрнеста:
В этом видении математики наука и образование идут рука об руку, а обучение математике определяется обществом и культурой. Историки математики упоминают о важных для развития этой науки цивилизациях древнего мира: это Древняя Месопотамия, Древний Египет, Древняя Греция, древняя Аравия, древняя Индия и древний Китай. Все это мертвые цивилизации.