Читаем Учебное пособие по курсу «Нейроинформатика» полностью

Инвертирующий шум — одно из четырех предоставляемых этой программой искажений изображения. Остальные искажения описаны в разделах: Затенение изображения, Добавляющий шум, Гасящий шум.

Гасящий шум

При исполнении команды "Гасящий шум", при редактировании задачи или, во всех программах, кроме программы Hopfield, во время Статистического теста с гасящим шумом производится наложение на изображение гасящего шума. Алгоритм «зашумления» с заданным уровнем Гасящего шума:

Для каждой точки изображения генерируется случайное число из диапазона (0,1).

Если это число меньше либо равно заданному уровню шума, то в изображении гасится соответствующая точка.

Гасящий шум — одно из четырех предоставляемых этой программой искажений изображения. Остальные искажения описаны в разделах: Затенение изображения, Добавляющий шум, Инвертирующий шум.

Удалить пример

Эта функция удаляет активный пример активной задачи. Если после этого примеров не остается, то заводится пустой пример. Таким образом, все задачи всегда содержат хотя бы один пример.

Первый пример

Эта функция делает активным первый пример активной задачи.

Последний пример

Эта функция делает активным последний пример активной задачи.

Удалить задачу

Эта функция удаляет все примеры активной задачи и заводит один пустой пример.

<p>Нейронная сеть</p>

Программа Hopfield

Нейронная сеть в данной программе является полносвязной (каждый нейрон связан с каждым, в том числе и с самим собой), однородной (все нейроны одинаковы), стонейронной (поскольку в сетях Хопфилда каждой точке изображения соответствует свой нейрон, а в этой программе используются изображения 10*10) сетью Хопфилда. Алгоритм формирования Синаптической карты описан в разделах "Параметры" и "Обучение". Алгоритм функционирования каждого нейрона описан в разделе "Нейрон".

Все программы кроме программыHopfield

Сеть, имитируемая данной программой, является полносвязной (каждый нейрон получает на каждом шаге сигналы со всех нейронов), с выделенными связями для получения входных данных. Подробная схема нейрона приведена в разделе Нейрон. Число нейронов в сети может варьироваться от 5 до 10 (см Число нейронов в сети). Число обменов сигналами между нейронами может варьироваться от 2 до 5 (см. Число срабатываний сети).

Нейрон

Программа Hopfield.

В данной программе все нейроны сети одинаковы и очень просты. Обозначив вектор сигналов сети через a[i] (i=1,…,100), а элементы синаптической карты — синаптические веса — через X[ij], работу нейрона можно описать следующими формулами:

J[i]= Сумма по j от 1 до 100 (a[j]*X[ij])

a'[i]= 1, если J[i]>0; 0, если J[i]<0.

a'[i] — новый сигнал i-ого нейрона.

Программа Pade.

Схема рационального нейрона представлена на рисунке ниже. Он состоит из шести частей: входных синапсов (x[i,j], y[i,j]), сумматоров (N,D) и функционального преобразователя (F).

Схема действия i-го нейрона проста — в каждый момент времени со всех нейронов на него поступают сигналы. Перед сумматором каждый сигнал умножается на синаптический вес x[i,j] для сумматора N и y[i,j] для сумматора D. Индекс i показывает номер нейрона получающего, а индекс j — номер передавшего сигнал. Отметим, что в силу ограничений, принятых в данной модели нейронной сети, все синаптические веса неотрицательны. После этого сигналы поступают на сумматоры. Вычисленные сумматорами сигналы передаются на функциональный преобразователь F. В данной программе все нейроны одинаковы (во всем, кроме синаптических весов, поскольку они являются характеристиками не нейронов, а нейронной сети в целом) и преобразуют сигнал по следующему правилу: F = N / (C + D), где С — Характеристика нейрона

В программах Sinus и Sigmoid нейроны отличаются только видом функционального преобразователя. Схема нейрона представлена на рисунке ниже. Он состоит из четырех частей: входных синапсов (x[i,j]), сумматора (N) и функционального преобразователя.

Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии