Линия, полученная в результате, полностью соответствует определению эллипса. Кнопки играют роль двух заданных точек. А сумма расстояний от них до любой точки на кривой всегда постоянна независимо от положения карандаша, потому что неизменно совпадает с длиной веревки.
Где же в этой конструкции фокусы эллипса? Там, где находятся кнопки. Я не буду это доказывать, но именно фокусы позволяют Люку и Дарту все время попадать в противника и загоняют шар в лузу при игре в бильярд на эллиптическом столе.
Вопрос: почему именно параболы и эллипсы имеют такую фантастическую способность фокусировать? Каким секретом они обладают?
Ответ: оба представляют собой поперечные сечения конуса.
Конус? Вы, возможно, не понимаете, причем тут он, но это именно то, что нам нужно. Просто до сих пор роль конуса была скрыта от нас.
Чтобы понять, причем здесь конус, представьте себе, как вы разрубаете его тесаком для разделки мяса, как если бы нарез
Но если разрезать конус под небольшим наклоном, то его сечение из окружности превращается в эллипс.
Чем больше угол наклона сечения, тем длиннее и тоньше пропорции эллипса. И при критическом угле, равном углу наклона образующей конуса, эллипс превращается в параболу.
Так вот в чем секрет: парабола, в очень узком смысле, замаскировалась под эллипс. Неудивительно, что и она обладает чудесной способностью эллипса фокусировать. Это свойство по наследству передается из поколения в поколение от эллипсов к параболам.
На самом деле окружности, эллипсы и параболы — члены большой дружной семьи, известной под общим названием
Эти четыре типа кривых покажутся еще более тесно связанными, если посмотреть на них с точки зрения алгебры. В алгебре они представлены в виде графиков уравнений второй степени:
где константы
В расчетах эти кривые появляются при исследовании траекторий объектов, перемещающихся под воздействием силы тяжести. Поэтому совсем не случайно планеты солнечной системы движутся по эллиптическим орбитам с одним из фокусов в центре Солнца; кометы проходят через солнечную систему по эллиптической, параболической или гиперболической траектории; а брошенный ребенком мяч летит по параболической дуге. Все это подтверждает существование конического заговора.
Вспомните об этом, когда в следующий раз будете играть в мяч.
15. Непременное условие
Друг моего отца по имени Дэйв, выйдя на пенсию, поселился в городке Юпитер во Флориде. Когда мне было лет двенадцать, мы всей семьей гостили у него, и он показал нам то, что произвело на меня неизгладимое впечатление.
Дэйву нравилось составлять график времени наступления рассветов и закатов[70]
, которые он наблюдал в течение всего года. Каждый день он отмечал две точки на своем графике и после многих месяцев наблюдений заметил нечто любопытное. Эти две кривые выглядели как встречные волны. Когда одна из них поднималась, другая опускалась, а когда восход солнца наступал раньше, заходило оно позже.Но были и исключения. В последние три недели июня, большей части декабря и в начале января время наступления восхода и захода каждый день было одинаково более поздним, что придавало волнам слегка однобокий вид.
Тем не менее закономерность в поведении кривых казалась очевидной: изменение промежутка между ними показывало увеличение или уменьшение продолжительности дня в различные времена года. Путем вычитания значений нижней кривой из значений верхней Дэйв также выяснил, как в течение года меняется продолжительность светового дня. К его удивлению, в
Он увидел почти идеальную синусоиду. Если вы проходили тригонометрию[71]
в средней школе, то, возможно, помните, что рассказывали о ней. Хотя не исключено, что ваш учитель больше говорил о синусоиде как об основном инструменте количественного выражения отношения между сторонами и углами треугольника. Это исходные тригонометрические определения древних астрономов и геодезистов.Тем не менее