Третья часть «Книги абака» содержит задачу, автором которой, скорее всего, был сам Леонардо: «Некто поместил пару кроликов в место, со всех сторон окруженное стеною. Со второго месяца после своего рождения кролики начинают спариваться и каждый месяц производить новую пару кроликов; кролики никогда не умирают. Сколько пар кроликов будет через год?»
Эта каверзная задача приводит к любопытной последовательности чисел, получившей широкую известность:
1, 2, 3, 5, 8, 13, 21, 34, 55, …
и т. д. Каждое число – сумма двух предыдущих. Их стали называть числами Фибоначчи и они часто встречаются как в математике, так и в мире природы. Например, у многих цветов число лепестков совпадает с числами Фибоначчи. Это следствие особенностей роста растений и геометрии примордиев – зачатков в виде мельчайших скоплений клеток в точке роста, развивающихся в отдельные лепестки.
Условия задачи Фибоначчи для воображаемой популяции кроликов нельзя воспроизвести физически, но более общее правило (модель Лесли) используется и по сей день для некоторых задач динамики популяций. Их приходится решать, чтобы предсказать популяционные колебания определенного вида животных с учетом спаривания и смертности.
Многие главы «Книги абака» содержат алгебраические задачи, отвечающие интересам купечества. Одна, не только практическая, выглядит так: «Некто купил 30 птиц – попугаев, голубей и воробьев. Попугай стоит 3 серебряных монеты, голубь 2, а воробей 1
/2. Он заплатил 30 серебряных монет. Сколько птиц каждого вида он купил?»Если
3
В мире рациональных чисел эти уравнения будут иметь много решений, но в самом вопросе подразумевается дополнительное условие:
Леонардо также приводит ряд задач, посвященных покупке лошади. Один человек говорит другому: «Если ты дашь мне треть своих денег, я смогу купить лошадь». Тот ему отвечает: «Если ты дашь мне четверть своих денег, я смогу купить лошадь». Сколько стоит лошадь? Сейчас уже найдено много решений; среди целочисленных самая малая цена лошади – 11 серебряных монет.
Греки открыли, как использовать конические сечения для решения некоторых кубических уравнений. Современная алгебра доказала, что если коническое сечение пересекается с другой коникой, точки пересечения находятся с помощью уравнения третьей или четвертой степени (в зависимости от конического сечения). Греки не знали об этом как об общем факте, но использовали следствия из него в некоторых частных случаях, применяя коническое сечение как новый вид геометрического инструмента.