Читаем Укрощение бесконечности. История математики от первых чисел до теории хаоса полностью

Использование символов в математике выходит далеко за пределы обозначения цифр. Это становится ясно даже при поверхностном знакомстве с любым математическим текстом. Первый важнейший шаг к сложным символьным выкладкам, за пределы изображения цифр, был совершен в области решения задач. Многие древние тексты, вплоть до периода Старого Вавилона, рассказывают читателям о некоем неизвестном количестве, а потом предлагают его определить. Стандартная форма задачи (в литературном изложении) на вавилонских табличках такова: «Я нашел камень, но не знаю его веса». Предоставив дополнительную информацию – «когда я добавил второй камень в половину веса первого, их общий вес составил 15 джин», – ученику предлагают вычислить вес исходного камня.

Алгебра

Такие задачи дали толчок к развитию области знаний, которую мы называем алгеброй: где числа представлены буквами. Неизвестная величина по традиции называется x, а сопутствующие условия излагаются в виде математических формул. Ученикам предлагается с помощью стандартных методов вычислить значение x по формулам. Например, упомянутую выше вавилонскую задачу мы запишем в виде уравнения x + 1/2 x = 15, и мы должны узнать, как вычислить x = 10.

На школьном уровне алгебра – ветвь математики, в которой неизвестные числа обозначены буквами, арифметические действия – специальными символами, а главная задача – вывести неизвестные из уравнений. Типовая задача школьной алгебры – поиск x, заданного в уравнении x2 + 2x = 120. Это квадратное уравнение имеет одно положительное решение, x = 10.

Здесь x2 + 2x = 102 + 2 × 10 = 100 + 20 = 120. Также оно имеет одно отрицательное решение, x = –12.

Тогда x2 + 2x = (–12)2 + 2 × (–12) = 144 – 24 = 120. Древние принимали положительные результаты, но не отрицательные. Мы признаем оба варианта: во многих задачах отрицательные числа имеют реальное значение и соответствуют физически возможным ответам. Вдобавок математика становится проще, если принять их существование.

В продвинутой математике использование символов для обозначения чисел сводится к ничтожной части этой области знаний, отражающей ее первые шаги. Алгебра рассказывает о свойствах выражений и уравнений с использованием буквенных символов, и речь уже о структуре и форме, а не только о числе. Этот более широкий взгляд развился в период, когда математики пошли дальше простой алгебры школьного уровня. Вместо того чтобы пытаться решать конкретные уравнения, они предпочли всмотреться в глубинные структуры процесса решения.

Как развивалась алгебра? Сначала это были задачи и методы. Со временем она приобрела символическую систему обозначений, которую мы считаем ее главным достоинством. Было много систем обозначений, но постепенно одна вытеснила конкурентов. Само название «алгебра» тоже возникло в процессе, и оно имеет арабские корни (об этом говорит начальное «аль», арабский эквивалент артикля the, что и указывает на происхождение).


Табличка из Старого Вавилона с клинописной записью алгебро-геометрической задачи


Уравнения

То, что мы сейчас называем решением уравнений (когда неизвестная величина должна быть найдена на основе имеющейся информации), почти так же старо, как и арифметика. Есть косвенные доказательства тому, что вавилоняне умели решать весьма сложные уравнения еще в 2000 г. до н. э., и прямые свидетельства решения несложных задач в виде клинописных табличек, датируемых примерно 1700 г. до н. э.

Сохранившаяся часть таблички YBC 4652, из периода Старого Вавилона, содержит 11 простых задач для решения, а по сопроводительному тексту можно понять, что изначально их было двадцать две. Вот типичный вопрос:

«Я нашел камень, но не знаю его вес. После того как я взял его вес шесть раз, добавил 2 джина и добавил одну треть от одной седьмой [этого нового веса], умноженной на 24, я взвесил его. В результате получилось 1 ма-на. Сколько весил исходный камень?»

Вес 1 ма-на равен 60 джинов.

В современных обозначениях мы примем за x вес исходного камня в джинах. Тогда решение будет выглядеть так:

(6x + 2) + 1/3 × 1/7 × 24(6x + 2) = 60,

и стандартные алгебраические методы дают результат 4 1/3 джина. На табличке есть этот ответ, но нет решения, объясняющего, как он был получен.

Перейти на страницу:

Похожие книги

Бозон Хиггса
Бозон Хиггса

Кто сказал что НФ умерла? Нет, она затаилась — на время. Взаимодействие личности и искусственного интеллекта, воскрешение из мёртвых и чудовищные биологические мутации, апокалиптика и постапокалиптика, жёсткий киберпанк и параллельные Вселенные, головокружительные приключения и неспешные рассуждения о судьбах личности и социума — всему есть место на страницах «Бозона Хиггса». Равно как и полному возрастному спектру авторов: от патриарха отечественной НФ Евгения Войскунского до юной дебютантки Натальи Лесковой.НФ — жива! Но это уже совсем другая НФ.

Антон Первушин , Евгений Войскунский , Игорь Минаков , Павел Амнуэль , Ярослав Веров

Фантастика / Научная Фантастика / Фантастика: прочее / Словари и Энциклопедии / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Как работает мозг
Как работает мозг

Стивен Пинкер, выдающийся канадско-американский ученый, специализирующийся в экспериментальной психологии и когнитивных науках, рассматривает человеческое мышление с точки зрения эволюционной психологии и вычислительной теории сознания. Что делает нас рациональным? А иррациональным? Что нас злит, радует, отвращает, притягивает, вдохновляет? Мозг как компьютер или компьютер как мозг? Мораль, религия, разум - как человек в этом разбирается? Автор предлагает ответы на эти и многие другие вопросы работы нашего мышления, иллюстрируя их научными экспериментами, философскими задачами и примерами из повседневной жизни.Книга написана в легкой и доступной форме и предназначена для психологов, антропологов, специалистов в области искусственного интеллекта, а также всех, интересующихся данными науками.

Стивен Пинкер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Суперпамять
Суперпамять

Какие ассоциации вызывают у вас слова «улучшение памяти»? Специальные мнемонические техники, сложные приемы запоминания списков, чисел, имен? Эта книга не предлагает ничего подобного. Никаких скучных заучиваний и многократных повторений того, что придумано другими. С вами будут только ваши собственные воспоминания. Автор книги Мэрилу Хеннер – одна из двенадцати человек в мире, обладающих Сверхъестественной Автобиографической Памятью – САП (этот факт научно доказан). Она помнит мельчайшие детали своей жизни, начиная с раннего детства.По мнению ученых, исследовавших феномен САП, книга позволяет взглянуть по-новому на работу мозга и на то, как он создает и сохраняет воспоминания. Простые, практичные и забавные упражнения помогут вам усовершенствовать память без применения сложных техник, значительно повысить эффективность работы мозга, вспоминая прошлое, изменить к лучшему жизнь уже сейчас. Настройтесь на то, чтобы использовать силу своей автобиографической памяти!

Герасим Энрихович Авшарян , Мэрилу Хеннер

Детская образовательная литература / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Самосовершенствование / Психология / Эзотерика