На заре первого тысячелетия в Китае вместо абака пользовались системой счетных палочек. Чтобы изображать числа, их выкладывали группами.
Верхний ряд на картинке показывает вертикальные палочки, представляющие единицы, сотни, десятки тысяч и т. д., соответствовавшие их положению в ряду символов. Нижний – горизонтальные палочки, представляющие десятки, тысячи и т. д. Здесь мы имеем два чередующихся типа. Подсчеты велись с помощью обоих типов палочек.
Счетные палочки древних китайцев
Для решения системы двух линейных уравнений китайские математики должны были разложить палочки на столе. Они использовали красные для чисел, которые собирались прибавлять, и черные – для вычитания. И тогда для решения системы уравнений, которую мы бы записали так:
3
они бы выложили в виде двух колонок на столе: одно с числами 3 (красные), 2 (черные), 4 (красные) и другое – 1 (красная), 5 (красные), 7 (красные).
Красно-черная система обозначения не приводит нас к отрицательным числам, это пока всего лишь операция вычитания. Однако она уже близка к самой «чжэн фу шу» – концепции положительных и отрицательных чисел. Здесь отрицательное число представлялось с использованием того же набора палочек, что и для положительных, с дополнительной отметкой в виде косой палочки над цифрой.
Уравнения в китайском стиле. Серыми изображены красные палочки
Согласно Диофанту, все числа могут быть только положительными. Он отвергал возможность существования отрицательных решений для уравнений. Но индийские математики считали отрицательные числа очень удобными для обозначения долгов в финансовых подсчетах: задолжать кому-то некоторую сумму в финансовом смысле считалось худшим вариантом, чем вообще не иметь денег. Ясно, что долг должен быть меньше 0. Если у вас было три фунта, а вы заплатили два, то у вас осталось 3–2 = 1 фунт. Иными словами, если у вас был долг два фунта, а вы получили три, ваша чистая прибыль составляет –2 + 3 = 1. Бхаскара замечает, что если конкретная задача имеет два решения, 50 и –5, то второе его категорически не устраивает: «Его не следует учитывать, потому что люди не приемлют отрицательных решений».
Несмотря на эти препятствия, мало-помалу отрицательные числа завоевывали себе место. И в реальных вычислениях их необходимо было как-то обозначать. Иногда они ставили ученых в тупик, иногда показывали долги, иногда обозначали движение вниз, а не вверх. Но какой бы ни была интерпретация, они превосходно служили арифметике и оказались так полезны в подсчетах, что глупо было бы от них отказываться.
Арифметика бессмертна
Мы так привыкли к нашей числовой системе, что готовы считать ее единственно возможной, по крайней мере единственной удобной. Но она развивалась тяжело, со множеством тупиковых ветвей, на протяжении тысячелетий. А еще у нее было много альтернатив, даже в таких ранних культурах, как майя. Иные обозначения для цифр 0–9 остаются в ходу в ряде стран. Да и в наших компьютерах внутренняя система счисления двоичная, а не десятичная: специально встроенные в них программы преобразуют числа в десятичную форму, прежде чем выводят их на экран или принтер.
Замечательная система счисления, основанная вместо 10 на 20 символах, была изобретена народом майя, населявшим Южную Америку около 1000 г. н. э. В двадцатеричной системе символы, эквивалентные нашим цифрам 347, будут обозначать следующее:
3 × 400 + 4 × 20 + 7 × 1
(поскольку 20 × 20 = 400), что равно 1287 в нашей системе обозначения. Настоящие символы майя показаны сверху.
Скорее всего, переход ранних цивилизаций к десятичной системе обусловлен тем, что у человека на руках десять пальцев. Тогда логично предположить, что 20 цифр майя соответствуют 20 пальцам на руках и ногах.