Брахмагупта – автор двух книг: «Брахма-спхута-сиддханта» и «Кханда-кхадьяка». Первая – самая важная: это астрономический текст с углублением в математику, с арифметическими и словесными эквивалентами простой алгебры. Вторая книга в числе прочего включает замечательную интерполяционную формулу для вычисления синусов на основе небольшого числа известных табулированных значений этой функции: используются значения большего и меньшего углов, чем искомый.
Махавира исповедовал джайнизм и включил много положений этой религии в свой труд по математике, «Ганита-сара-самграха». Эта книга во многом повторяет труды Арьябхаты и Брахмагупты, но идет гораздо дальше и в целом намного сложнее. Она содержит описание дробей, перестановок и комбинаций, решение квадратных уравнений, теорему Пифагора и попытку вычислить периметр эллипса.
Бхаскара (известный также как «учитель») написал три известных труда: «Лилавати», «Биждаганита» и «Сиддханта-широмани» («Венец учения»). Согласно Фейзи, придворному поэту при могольском императоре Акбаре, дочь Бхаскары звали Лилавати. Отец решил составить ей гороскоп и вычислить точное время ее свадьбы. Чтобы придать своим манипуляциям наибольшую эффектность, он поместил дырявую чашку в таз с водой, так что в самый ответственный момент она должна была погрузиться на дно. Но Лилавати так низко наклонилась над водой, что жемчужинка с ее расшитого бусами платья отскочила и упала в чашку, закупорив дырку. Чашка так и не утонула, а это означало, что день свадьбы Лилавати никогда не наступит. Чтобы утешить дочь в ее горе, Бхаскара написал для нее труд по математике. Правда, легенда не уточняет, что подумала об этом сама девушка.
Древняя обсерватория Джантар-Мантар возле Джайпура. Сегодня очевидно, что дизайнер был прекрасным математиком
«Лилавати» посвящена сложным идеям арифметики и содержит метод девятки, при котором числа заменяют суммой составляющих их цифр, чтобы проверить результат вычислений. Там же приводятся правила проверки делимости на 3, 5, 7 и 11. Четко прописаны функции нуля как самостоятельной цифры. В «Биждаганите» мы находим способы решения уравнений. «Сиддханта-широмани» связана с тригонометрией: здесь есть таблицы синусов и различные тригонометрические соотношения. Репутация Бхаскари была столь прочной, что его книги переиздавали вплоть до начала XIX в.
Самый древний из дошедших до нас математических текстов Китая – книга, отредактированная Чжан Цаном и датируемая примерно 100 г. н. э. Типичная задача такова: «Два с половиной пикуля риса были куплены за 3
/7 ляна серебра. Сколько пикулей можно купить за 9 лянов?» Предполагаемое решение использует математический принцип, названный средневековыми математиками тройным правилом. В современных обозначениях, взяв заоткуда
Индийская система
Индийская система начала распространяться по арабскому миру еще до того, как полностью сформировалась на родине. Ученый Север Себохт так описывал ее использование в Сирии в 662 г.: «Я опущу все дискуссии о науке в Древней Индии ‹…› об их превосходных открытиях в астрономии ‹…› и других ценных методах вычисления ‹…› я хочу лишь сказать, что все эти вычисления были сделаны при помощи девяти цифр».
В 776 г. при дворе Великого халифа появляется путешественник из Индии и демонстрирует свои способности в сиддханта – методе подсчетов, а также в тригонометрии и астрономии. Судя по всему, основой его вычислений служила «Брахма-спхута-сиддханта» Брахмагупты, написанная в 628 г., но в любом случае его труд был прекрасно переведен на арабский.
На первых порах индийской системой пользовались только ученые, и лишь позже этот метод стал распространяться в арабском деловом сообществе, а потом и в быту, вплоть до 1000 г. Но изданный в 825 г. труд Аль-Хорезми «Книга об индийском счете» принес индийской системе широкую известность в арабском мире. Четырехтомный труд другого математика, Аль-Кинди, «О применении индийской арифметики» (830) укрепил уверенность ученых в возможности записать любое число при помощи всего десяти цифр.
Темные века