Оставшиеся фермионы в сильном взаимодействии не участвуют и зовутся лептонами. Их тоже шесть: электрон, мюон и тау-лептон (с зарядами –1) и соответствующие нейтрино – электронное, мюонное и тау-нейтрино (электрически нейтральные). Электрослабое взаимодействие осуществляется посредством безмассового, электрически нейтрального фотона и обладающих массой
Фермионы подразделяются на три поколения – грубо говоря, ранжируются по массе. Важнее, однако, то, что поколения разбивают фермионы на подмножества, обязательно содержащие одинаковое количество кварков и лептонов, иначе Стандартная модель не была бы согласованной. Число поколений требованиями согласованности четко не устанавливается, но имеющиеся данные убедительно показывают, что поколений всего три 204.
Помимо фермионов (кварков и лептонов) и калибровочных бозонов в Стандартной модели есть еще только одна частица – бозон Хиггса. Он обладает массой и не является калибровочным бозоном. Хиггсовский бозон электрически нейтрален, и его задача – придавать массу фермионам и тем калибровочным бозонам, которые ею обладают.
Разочарованы, что все так уродливо?
Приложение Б. Проблема с естественностью
Предположение о равномерном распределении основывается на том, что интуитивно это решение кажется простым. Однако нет математического критерия, который выделял бы такое распределение вероятностей. И действительно, любая попытка это осуществить лишь приводит нас обратно к предположению, что некое распределение вероятностей было предпочтительнее само по себе. Единственный способ разорвать этот круг – попросту сделать выбор. Таким образом, естественность – по своей сути тоже эстетический критерий[116].
Первая попытка обосновать равномерное распределение вероятностей для критерия естественности может быть такой: оно не вводит дополнительных параметров. Но конечно же вводит – число 1 в качестве типичной ширины распределения. «Ну, – скажете вы, – число 1 – это единственное число, которое естественность дозволяет мне использовать». Что ж, все зависит от того, как вы определяете естественность. А вы определили ее, сопоставляя возникшее число со случайным. А каково же распределение случайной величины? И так по замкнутому кругу.
Чтобы получше увидеть, почему этот критерий водит нас по кругу, представьте себе распределение вероятностей на интервале от 0 до 1, которое в районе некоторого числа имеет пик с шириной, скажем, 10–10. «Вот, – восклицаете вы, – введено маленькое число! Это тонкая настройка!» Погодите. Это число тонко настроено согласно равномерному распределению вероятностей. А я его не использую. Я использую распределение с острым пиком. А в таком случае вероятность того, что два случайно выбранных числа отстоят друг от друга на расстояние 10–10, очень высока. «Но ведь это порочный круг», – скажете вы. Именно, но это был мой аргумент, не ваш. Распределение вероятностей с острым пиком обосновывает себя столь же хорошо или столь же плохо, как и равномерное распределение. Так какое же лучше?
Да, знаю, почему-то кажется, что постоянная функция особая, что она как-то проще. И отчего-то кажется, будто единица – особое число. Но математический ли это критерий или эстетический?
Вы можете попробовать применить к этой проблеме метаподход и задать себе вопрос: есть ли наиболее вероятное распределение? Чтобы ответить на этот вопрос, вам нужно знать распределение вероятностей в пространстве распределений вероятностей и так далее, что ведет к рекуррентному соотношению. Число 1 действительно особое: это единичный элемент мультипликативной группы. А значит, можно попытаться построить рекуррентную последовательность, которая сходится к распределению с шириной 1 в качестве предельного случая. Я покрутила эту идею, и, если коротко, ответ получился отрицательным: всегда требуются дополнительные допущения, чтобы выбрать распределение вероятностей.
А вот чуть более развернутый ответ, иллюстрирующий проблему, для специалистов: в пространстве функций есть бесконечное множество базисов, и никакие из них не предпочтительнее остальных с точки зрения математики. Мы просто очень привыкли к мономам, отсюда наша любовь к постоянным, линейным и квадратичным функциям. Но с тем же успехом вы могли бы отдать предпочтение равномерному распределению в пространстве Фурье (для любого параметра, с которым имеете дело). Равномерное распределение существует ведь для какого угодно базиса, какой бы вы ни выбрали, и все они разные. Так что если вы хотите использовать рекурсию, то можете поменять выбор распределения на выбор базиса функций распределения, но в любом случае выбор вам делать придется. (Рекурсия еще привносит дополнительные допущения.)