Читаем УРОЖАИ И ПОСЕВЫ полностью

Большинство математиков, как я уже говорил недавно, в мире понятий ограничили сами себя жесткими рамками, затворившись во Вселенной, обустроенной раз и навсегда - в сущности той самой, которую нашли «совсем готовой», когда принимались за свои ученые изыскания. Они словно бы получили в наследство большой и красивый дом со всеми удобствами, с гостиными, кухнями и мастерскими, наборами кухонной посуды, с общедоступными инструментами - да и со всем, право же, из чего мастерят и готовят. Но каким образом постепенно, из поколения в поколение, строился этот дом, как и почему были задуманы и изготовлены эти инструменты (а не другие…), почему комнаты размещены и устроены здесь так, а там иначе - вот сколькими вопросами наследникам никогда и в голову не приходило задаться. Вот та «Вселенная», «данность», в которой должно жить - точка, и все! Нечто как будто бы великое, огромное (и это ведь, как правило, долгое дело - обойти все комнаты), но привычное в то же время, а главное - неизменное. Если они о чем и хлопочут, то о том, чтобы содержать в порядке и украшать наследное достояние: починить колченогий стул, оштукатурить фасад, подточить инструмент, иногда даже, в случае чьей-нибудь особенной предприимчивости, изготовить в мастерской полный набор новой мебели. И так выходит, когда они все устроят, что мебель теперь - сама красота, да и весь дом оказывается разукрашенным.

Еще реже один из них задумывает внести изменения в устройство какого-нибудь инструмента из запаса, или даже, под настойчивым давлением необходимости, придумать и изготовить новый. И, взявшись за это, он только что не рассыпается в извинениях за то, что им ощущается как преступление, недостаток благоговения к семейной традиции, в которую его странное новшество привносит как будто бы некоторый беспорядок.

В большинстве комнат этого дома окна и ставни накрепко закрыты - несомненно, из страха, как бы не ворвался ветер со стороны. И когда красивая новая мебель, не говоря уже о потомстве, начинает загромождать дом, всюду, вплоть до самых коридоров, становится не пройти, ни один из этих наследников не пожелает дать себе отчет в том, что его уютная, привычная Вселенная делается тесной и сковывает движения. Скорее, чем стараться разрешить эту незадачу, все они предпочтут, протискиваясь, пробираться как-нибудь, кто между буфетом Людовика XV и плетеным креслом-качалкой, кто между сопливым мальчуганом и египетским саркофагом; и кто-то еще наконец, за неимением лучшего, полезет, карабкаясь изо всех сил, на груду самых разнородных предметов, роняя стулья, круша скамейки…

Небольшая картина, которую я набросал, не содержит ничего, что было бы спецификой лишь математического мира. На ней отражено древнее, с незапамятных времен укоренившееся положение дел, с каким можно столкнуться в любой среде, во всех сферах человеческой деятельности, причем (насколько я знаю) всех обществ и всех эпох. Я уже намекал на это - и сам ни в коей мере не претендую на роль исключения. Как покажет мое свидетельство, справедливо как раз обратное.

Случилось всего лишь так, что в сравнительно ограниченной области интеллектуального творчества я оказался не слишком серьезно затронут{12} именно этими старинными уложениями, которые можно было бы назвать «культурной слепотой» - неспособностью видеть (и двигаться) за пределами «Вселенной», установленными культурным окружением.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика