Читаем УРОЖАИ И ПОСЕВЫ полностью

6. Вернемся, однако же, к моей персоне и моему труду. Если я отличился в математическом искусстве, то не столько за счет умения и настойчивости в разрешении проблем, завещанных моими предшественниками, сколько благодаря природной склонности, позволявшей мне видеть вопросы, заведомо узловые, которых не замечал никто, извлекать на свет полезные понятия, в которых была нужда (зачастую никто об этом не задумывался, пока не появлялось новое понятие), а также удачные формулировки, никому до тех пор не приходившие в голову. Весьма нередко понятия и формулировки собирались в картину настолько стройную и безукоризненную, что про себя я уже нимало не сомневался в их правильности (разве что с точностью до небольших поправок) - и тогда, если речь не шла о работе над отдельными статьями, предназначенными для публикации, я часто позволял себе остановиться и не тратить время на доказательства: ведь многие из них в ясной уже перспективе утверждения и соответствующего ему контекста, не требуя более «мастерства», становились едва ли не простой рутиной. Объектам, завораживающим взгляд, несть числа; возможно ли ответить до конца на каждый призыв! При всем том предложения и теоремы, доказанные честно, как полагается, исчисляются тысячами в моих работах, написанных и опубликованных - и думаю, можно сказать, что за небольшим исключением все они вошли в общую наследную копилку вещей, обыкновенно принимаемых как «известные», и так или иначе широко используемых повсюду в математике.

Но еще сильнее, чем об обнаружении новых вопросов, открытии понятий и утверждений, - о плодотворных точках зрения, неизменно ведущих меня к тому, чтобы представлять и в той или иной мере развивать совершенно новые темы, - вот о чем печется мой дух, и вот к чему в особенности устремлены усилия моего таланта. Похоже, что это и есть самая существенная часть моего вклада в современную математику. По правде говоря, бесчисленные вопросы, понятия, утверждения, о которых я толкую, приобретают для меня смысл лишь в свете такой вот «точки зрения» - или, лучше сказать, они рождаются вдруг, с силой очевидности; точь-в-точь как в черной ночи возникший свет, пускай рассеянный, словно бы рождает из ничего те самые очертания, расплывчатые или отчетливые, которые посреди темноты неожиданно открываются нам. Без такого света, который соединял бы их в общую картину, десять ли, сто ли, тысяча вопросов, понятий, утверждений нагромождаются бессвязной и бесформенной грудой «умственных приспособлений», отделенных друг от друга - совсем не так, как части единого Целого, которые если и прячутся, желая остаться невидимыми, в складках ночной завесы, то ощущаются тем самым не менее ясно, и в предчувствии дают о себе знать.

Когда точка зрения плодотворна? Тогда, когда она раскрывает нам живые, действующие части объединяющего и придающего им смысл Целого. Это, во-первых, жгучие вопросы, никем еще не услышанные, и (как если бы в ответ на эти вопросы) понятия до того уже естественные, которые, однако, никому и в голову не приходило извлечь на свет. В тот же список входят утверждения, на первый взгляд само собой разумеющиеся, которые, однако, до сих пор никто не рискнул сформулировать. Во-вторых, когда она проливает свет на породившие

их проблемы, вместе с понятиями, ранее неизвестными, позволившими их выразить математическим языком. В еще большей степени, чем так называемые ключевые теоремы в математике, плодотворные точки зрения в нашем искусстве суть{20} самые мощные инструменты. Или, еще точнее, они - глаза искателя, страстно желающего познать природу объектов, составляющих математику.

Итак, плодотворная точка зрения есть не что иное как пресловутый глаз, благодаря которому мы одновременно открываем и прозреваем единство во множественности открывшегося нам. И это единство - воистину сама жизнь, дуновение, которое, складывая бесчисленные осколки в целое, вдыхает в них душу.

Но, как это заложено в самом названии, «точка зрения» сама по себе остается частичной. Она предлагает нам один из видов пейзажа или панорамы среди множества других столь же ценных, столь же «настоящих». Именно в той мере, в какой точки зрения, сочетаясь, дополняют друг друга до самой реальности, читай - множится число наших «глаз», наш взгляд проникает глубже в суть вещей. Чем сложней и богаче реальность, которую мы стремимся познать, тем важнее иметь в распоряжении несколько «глаз»{21}, дабы постичь всю широту ее - и всю изысканность.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика