Читаем УРОЖАИ И ПОСЕВЫ полностью

Понятие схемы приходит на ум как самое естественное, самое «очевидное», когда речь идет о том, чтобы собрать в одно бесконечный ряд понятий «многообразия» (алгебраического), с каким приходилось иметь дело раньше (отдельное такое понятие для каждого простого числа{42}…). И потом, та же самая схема (или «многообразие» нового вида) одна порождает, для каждого простого числа р, однозначно определенное «многообразие (алгебраическое) в характеристике р». Набор этих различных многообразий в различной характеристике можно тогда себе представить чем-то вроде «(бесконечного) веера многообразий» (свое для каждой характеристики). «Схема» и есть этот магический веер, соединяющий между собой, как различные «ветви», эти «аватары», или «воплощения», всевозможных характеристик. Она же тем самым обеспечивает эффективный «принцип перехода», чтобы устанавливать связь между «многообразиями»-выходцами из геометрий, ранее представлявшихся в той или иной мере изолированными, отрезанными друг от друга. Теперь они оказались объединенными в одну общую «геометрию» и внутри ее между собой связанными. Ее можно было бы назвать

430 бурном зарождении новой геометрии (1958 г.) идет речь в сноске п° 31. Понятие ситуса, или «топологии Гротендика» (предварительная версия понятия топоса), появляется по горячим следам понятия схемы. Оно, в свою очередь, предоставляет в распоряжение математиков новый язык «локализации» или «спуска», который применяется на каждом шагу при развитии темы и инструмента теоретико-схемных. Понятие топоса, более глубокое и геометрическое, остается невыраженным в явном виде в течение нескольких последующих лет; оно выбирается на свет главным образом начиная с 1963 г. с развитием этальных когомологии и понемногу заставляет признать себя первым из основополагающих.

Прогулка по творческому пути, или дитя и Мать

теоретико-схемной геометрией, предварительным наброском «арифметической геометрии», ее бутоном, расцветшим в ходе последующих лет.

Идея схемы сама по себе - простоты младенческой; такая простенькая, такая скромная, что никому до меня и в голову не пришло за ней так низко нагнуться. И до того даже «дурашливая», признаться, что потом еще несколько лет, очевидности наперекор, для многих моих ученых коллег все это выглядело воистину «несерьезно»! У меня, впрочем, месяцы ожесточенного и уединенного труда ушли на то, чтобы убедиться в своем углу, что это действительно «работает» - что новый язык, этакий глуповатый, который я в своей неисправимой наивности упорно стремился испробовать, оказался и впрямь подходящим для того, чтобы уловить, в новом свете и с новой точностью, и в общих отныне рамках, некоторые из самых первородных геометрических предчувствий, связанных с уже существующими «геометриями в характеристике р». Это было своего рода упражнение, сочтенное поначалу дурацким и безнадежным всеми «достаточно компетентными» особами. Один я, без сомнения, мог когда-либо вбить себе в голову взяться работать над подобной нелепостью - и даже (тайным бесом ведомый) успешно завершить, всем чертям назло!

Вместо того чтобы дать сбить себя с толку окружавшим меня законодательным соглашениям о том, что серьезно и что нет, я просто доверился, как раньше, тихому голосу вещей, уже звучавшему во мне: ведь я умел прислушаться. Награда не заставила себя ждать, превзойдя всяческие ожидания. В течение этих нескольких месяцев, совсем даже не «нарочно», я нашел инструменты мощные и несомненные в своей эффективности. Они дали мне возможность не только вновь получить (играючи) старые результаты, знаменитые своей сложностью, в более резком свете и их превзойти, но также, приблизившись наконец вплотную, разрешить проблемы «геометрии в характеристике р», которые до тех пор казались вне пределов досягаемости любыми средствами, тогда известными{43}.

В процессе нашего познания законов Вселенной (математических или каких еще) только невинность, и ничто другое, наделяет нас реформаторской властью. Та изначальная невинность, данная нам от рождения, какая обитает в каждом из нас, будучи зачастую объектом нашего же презрения и тайного страха. Она одна объединяет смирение и смелость, благодаря которым мы оказываемся способны проникнуть в суть вещей и впустить вещи внутрь себя, проникшись ими.

Эта власть - отнюдь не особый «дар», как, скажем, исключительная способность рассудка усваивать и управляться легко и ловко с впечатляющей массой известных фактов, идей и технических приемов. Подобные дары без сомнения драгоценны и уж, конечно, достойны зависти тех, кто (как я) не был от рождения наделен ими так щедро - «сверх всякой меры».

Все же не эти дары, и не честолюбие даже самое пылкое, поддержанное непреклонной волей к успеху, позволяют перешагнуть «круги невидимые, но властные», ограждающие Вселенную. Только невинность сумеет их преодолеть, сама того не заметив и не слишком о том заботясь, в минуты, когда мы, с жадностью вслушиваясь в голоса вещей, предаемся во власть этой младенческой игры целиком…

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика