Есть много других «топологических инвариантов», введенных топологами, чтобы подступиться к того или иного рода свойствам топологических пространств. Если не говорить о «размерности» пространства и (ко)гомологических инвариантах, первые из числа прочих инвариантов - «гомотопические группы». Я ввел новый инвариант в 1957 г.: группу К{Х) (так называемую «группу Гротендика»), которой сразу же посчастливилось получить признание и чья значимость (как для топологии, так и в арифметике) не устает подтверждаться снова и снова.
Множество новых инвариантов, по своей природе изощренней тех, что в наше время известны и используются, но по моему ощущению совершенно фундаментальных, намечено в моей программе по «ручной топологии» (ее краткий обзор включен в «Набросок Программы», который войдет в четвертый том «Раздумий»). Эта программа основывается на понятии «ручной теории», или «ручного пространства», которое представляет собой, в чем-то как и понятие топоса, (вторую) «мета-
Прогулка по творческому пути, или дитя и Мать
подают голос (правда, в основном «между строк») в гипотезах Вейля, являясь для них глубоким «оправданием бытия» и придавая им (по крайней мере для меня, «впутанного в это дело» объяснениями Серра) полный их смысл. Но возможность связать эти инварианты с «абстрактными» алгебраическими многообразиями, о которых шла речь в этих гипотезах, способом в точности отвечающим прозвучавшим там требованиям, оставалась не более чем надеждой. Сомневаюсь, что кто-либо помимо Серра и меня самого (даже - ив первую очередь - лично Андрэ Вейль!){46} мог в нее верить…
Незадолго до этого наше представление об этих инвариантах оказалось значительно обогащенным и обновленным работами Жана Лерэ (написанными в плену в Германии, во время войны, в первой половине сороковых). Существенно новаторской была идея пучка (абелева)
морфозу понятия пространства». Оно намного прозрачнее (как мне кажется) и не такое глубокое, как это последнее. Я, однако, предвижу, что его воздействие на топологию «собственно говоря» определенно должно быть еще значительней, и что благодаря ему «ремесло» геометра-тополога изменится целиком, сверху донизу - путем глубокого преобразования концептуального контекста, в котором он работает. (Как это уже случилось с алгебраической геометрией после введения точки зрения теоретико-схемной.) Я послал свой «Набросок» нескольким старым друзьям и известным топологам, но непохоже, чтобы содержание их сколько-нибудь заинтересовало …
Мне представляется, что этот «барьер» у Вейля был частью общей неприязни ко всякого рода «нагромождениям», ко всему, что приходилось сродни формализму (и не могло быть изложенным на нескольких страницах), или «конструкции», сколько-нибудь запутанной. В нем определенно не было ничего от «строителя», и очевидно, что именно против воли он был принужден в течение тридцатых-сороковых годов заниматься развитием первоначальных основ «абстрактной» алгебраической геометрии, которые (ввиду степени его расположенности к этому труду) явились воистину «Прокрустовым ложем» для потребителя.
Я не знаю, желал ли он, чтобы я пошел дальше и вложил свои силы в построение больших зданий, которые позволили бы мечтам Кронекера и его собственным воплотиться в языке и инструментах изощренных и эффективных. Он ни словом не откомментировал ни тот труд, в который видел меня погруженным, ни уже готовые части работы. Так же не получил я и отклика на «РС», экземпляр которых послал ему больше чем три месяца назад, с теплой дарственной надписью, сделанной от руки.
над пространством, с которым Лерэ связал соответствующие «группы когомологии» (так называемые «когомологии с коэффициентами в пучке»). Это было как если бы старый добрый, «когомологический», эталон метра, которым располагали до сих пор для «измерения» пространства, превратился вдруг в невообразимое множество новых «метров» всевозможной величины, формы и содержания, каждый внутренне приспособленный к рассматриваемому пространству, о котором поставляет нам сведения с безупречной точностью, причем такие, какие может дать только он один. Это была главная идея в глубоком преобразовании нашего подхода к пространствам всех видов и, безусловно, одна из важнейших идей, появившихся в течение этого столетия. Благодаря прежде всего последующим работам Жан-Пьера Серра идеи Лерэ уже в первое десятилетие после своего появления на свет принесли такие плоды, как впечатляющий прорыв в развитии теории топологических пространств (и в частности их инвариантов, называемых «гомотопическими», тесно связанных с когомологиями), и другой, не менее важный, прорыв в так называемой «абстрактной» алгебраической геометрии (с основополагающей статьей «АКП» Серра, опубликованной в 1955 г.). Мои собственные работы по геометрии, начиная с 1955 г., шли в продолжение этих трудов Серра и, тем самым, новаторских идей Лерэ.