Читаем УРОЖАИ И ПОСЕВЫ полностью

12. Новаторская идея схемы, как мы уже знаем, дала возможность связать между собой различные «геометрии», соответствующие различным простым числам (или различным «характеристикам»). Каждая из этих геометрий оставалась все еще существенно «дискретной», или «разрывной» по контрасту с традиционной геометрией, доставшейся нам в наследство от прошедших веков (начиная с Евклида). Новые идеи, введенные Зарисским и Серром, вернули в какой-то степени этим геометриям «непрерывное измерение», сразу же перехваченное «теоретико-схемной геометрией», пришедшей с целью их объединить. Но если говорить о «невероятных гипотезах» (Вейля), то до их подтверждения было еще очень далеко. «Топологии Зарисского» были с этой точки зрения настолько грубы, что оставались почти что на уровне «дискретных скоплений». Недоставало, очевидно, какого-то нового принципа, который позволил бы связать эти геометрические объекты (или «многообразия», или «схемы») с привычными («благонадежными») топологическими «пространствами»; скажем, такими, в которых «точки» отчетливо изолированы друг от друга, в то время как в пространствах-без-стыда-и-совести, введенных Зарисским, точки имеют досадную склонность склеиваться между собой…

Прогулка по творческому пути, или дитя и Мать

Решительно, только появление «нового принципа», никак не меньше, могло устроить, чтобы «брачный союз числа и величины (размера)», или «геометрии разрывного» с «геометрией непрерывного» совершился - как то сулило некое предчувствие, впервые давшее о себе знать языком гипотез Вейля.

Понятие «пространства», без сомнения, одно из самых древних в математике. Оно является до такой степени основополагающим для нашего «геометрического» понимания мира, что принималось на веру, практически не требуя описаний, в течение более чем двух тысяч лет. И лишь в прошлом веке понятие это постепенно освободилось из-под тирании непосредственного восприятия (как единственно пространства, нас окружающего) и связанных с ним традиционных (евклидовых) теоретических разработок, чтобы обрести теперь уже свои собственные динамику и независимость. В наши дни оно входит в число понятий, наиболее часто и повсеместно используемых в математике, безусловно известных всем математикам без исключения. Понятие, впрочем, изменчивое, не поспоришь; у него сотни, тысячи обликов, в зависимости от того, какую структуру ему придать. Есть из них богатейшие (как почтенные «евклидовы» структуры, или «аффинные», или «проективные», или еще «алгебраические» структуры одноименных «многообразий»; эти обобщают все предыдущие, придавая им гибкость), есть аскетически строгие. Последние таковы, что всякий элемент информации «качественной» из них словно бы исчез безвозвратно, и присутствует лишь намек на количественную сущность понятия близости, или предела{44}, и наличествует лишь вернее всего ускользающая от интуиции («топологическая») версия понятия формы. Наиболее безыскусное среди всех, топологическое пространство в течение истекшей половины столетия играло роль своего рода широкого лона общих концепций, охватывающих все прочие структуры. Изучением таких пространств занимается одна из самых увлекательных, самых животрепещущих ветвей геометрии: топология.

Как ни неуловима могла казаться сначала структура «чистого качества», воплощенная в «пространстве» (называемом «топологическим»), при отсутствии каких бы то ни было данных количественной природы (как расстояние между двумя точками, в частности), которые дали бы нам возможность уцепиться за сколько-нибудь привычное интуитивное представление о «величине», или «малости», - в течение минувшего века удалось наконец загнать эти пространства в плотные и гибкие ячейки языка, тщательно «скроенного из кусочков»

.

Более того, изобрели и изготовили целиком эталоны «метра», или «сажени», именно затем, чтобы, всему наперекор, навязать что-то вроде «мер» (названных «топологическими инвариантами») этим пространствам-спрутам, которые, подобно неуловимым призрачным городам, казалось, ускользали при всякой попытке нанести их на карту с масштабом. Правда, основная часть этих инвариантов, притом самых существенных, более тонкой природы, чем просто «число», или «величина». Скорее, они сами представляют собой более или менее прихотливые структуры, привязанные (посредством конструкций той или иной степени сложности) к пространству, о котором идет речь. Один из самых давних и важнейших таких инвариантов, введенный еще в предыдущем столетии (итальянским математиком Бетти), образован различными «группами» (или «линейными пространствами») - так называемыми «когомологиями», соответствующими данному пространству{45}. Это они

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика