Читаем В лабиринте чисел полностью

— Ну и что же? Отдалённость и отвлечённость — понятия разные. Что звёзды, что планеты — в том числе и наша Земля — всё это природа, всё тела естественные. И, стало быть, астрономия — наука главным образом естественная. А в том, что она одновременно и точная, это уж моя заслуга. — Ари перевела дух и продолжала: — Между прочим, знаешь ли ты, что самые древние на земле числа появились как раз потому, что людям понадобилось сосчитать созданное природой: плоды, деревья, домашних животных, звериные шкуры… Не спроста числа эти называют натуральными, то есть природными.

— Натуральные числа… Да ведь я о них знаю! — обрадовался Чит. — Это 1, 2, 3, 4, 5, 6 и так далее, без конца…

— Именно, без конца! — подхватила Ари. — В натуральном ряду чисел каждое последующее число больше предыдущего на единицу. А какое огромное число ни возьми, его всегда можно сделать на единицу больше, так ведь? Вот и получается, что натуральный ряд бесконечен.

— Любопытно! Начало есть…

— А конца нет! Но о бесконечности поговорим на следующей остановке —

Бесконечность

И сразу в лицо им ударил свет, да такой ослепительный, что Чит ахнул и зажмурился. А когда открыл глаза, ахнул снова — от изумления.

То, что он увидел, очень напоминало муравейник. Но, не в пример обычному, это был муравейник огромный, прямо-таки гигантский, сделанный к тому же из очень чистого, очень прозрачного стекла, так что всё его сложное, запутанное нутро просматривалось насквозь. Да, муравейник просматривался насквозь, и всё-таки нельзя было сказать, что видишь его целиком: он был для этого слишком необъятен. Разбегались во все стороны несметные вереницы стеклянных комнат, растворялись где-то в белёсой дали нескончаемые ручейки-коридоры. Но откуда они текут? Где иссякают? Разобраться в этом не было никакой возможности.

— Так вот как выглядит бесконечность! — зачарованно выдохнул Чит.

— Да, похоже, — согласилась Ари. — Ни конца, ни начала. Правда, то, что ты видишь, — это всего-навсего общий вид лабиринта чисел. И всё-таки наиболее наглядное представление о бесконечности ты получишь именно здесь. Ведь числам тоже нет конца!

— Зато у них есть начало, — неожиданно возразил Чит. — А ты сама только что сказала, что у бесконечности его нет.

— Поймал меня на слове? Молодец. В натуральном ряду чисел начало и впрямь имеется: единица.

— Ты говоришь так, будто есть ещё какие-то другие ряды, ненатуральные, — съязвил он.

Но Ари спокойно подтвердила, что другие ряды, безусловно, найдутся. В том числе и такие, где нет не только конца, но и начала.

— Хотел бы я на них посмотреть! — недоверчиво усмехнулся Чит.

— Нет ничего проще. Возьмём единицу и умножим её на два. Получим 2. Двойку снова умножим на два…

— Получим 4.

— Четыре, в свою очередь, удвоим опять. И так будем удваивать каждое вновь полученное число. Вот тебе и другой, не натуральный, но тоже бесконечный ряд чисел, где каждое последующее число вдвое больше предыдущего: 1, 2, 4, 8, 16, 32, 64…

— Хорошо, — согласился Чит, — пусть ряд не натуральный. Но ведь начало у него всё равно есть: единица.

— Пока что начало есть, но сейчас оно исчезнет, — весело пообещала Ари. — Итак, мы получили бесконечно возрастающий ряд чисел, где каждое последующее число вдвое больше предыдущего. Теперь подумай: можем мы перевернуть это определение и сказать, что каждое предыдущее число этого ряда вдвое меньше последующего?

— Ну, можем, — милостиво разрешил Чит. — Что в лоб, что по лбу.

— Вот и пройдёмся по этому ряду в обратном направлении. Начнём, скажем, с четырёх. Четыре вдвое меньше восьми, двойка вдвое меньше четырёх, единица вдвое меньше двух…

— Стоп! — крикнул Чит. — Дальше единицы ехать некуда.

— С чего ты взял? Разве нельзя и единицу разделить на два? А половину её опять на два? А новую половину снова на два… И так опять-таки до бесконечности. Вот мы и получили числовой ряд без конца и без начала. Ведь как нет такого БОЛЬШОГО числа, которое нельзя увеличить вдвое, так нет и такого МАЛОГО, которое нельзя вдвое уменьшить.

— Твоя взяла! — сдался Чит. — Этот ряд и впрямь без конца и без начала. Но уж середина у него есть наверняка: единица.

— Почему ты решил?

— Потому что по обе стороны единицы расположено одинаково бесконечное количество чисел.

— Допустим. Но разве нельзя сказать, что одинаково бесконечное количество чисел расположено по обе стороны двойки? Или восьмёрки?

— Постой, Ари, — вышел из себя Чит, — что ты говоришь? По-твоему, получается, что середина у этого бесконечного ряда везде?

— Вот именно везде. Или нигде. Как тебе заблагорассудится. То, что не имеет ни конца, ни начала, вполне может не иметь и середины.

Ари взглянула на Чита и невольно улыбнулась: он был такой сердитый, такой взъерошенный…

— Что, брат, сложно? Ничего не поделаешь — бесконечность! Когда-нибудь познакомишься с ней получше и поймёшь, что в бесконечности свои законы, свои правила вычислений. Но всё это будет когда-нибудь. А пока нам с тобой пора на следующую остановку —

Всевозможные нумерации
Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное