Читаем В лабиринте чисел полностью

— На ослах?! — задохнулся Ара. — На ослах?! Да знаете ли вы, чем обязаны вавилонской математике? Вавилонская математика оказала благотворррнейшее влияние на математику многих стррран. В Вавилон ездили учиться такие замечательные учёные, как Пифагор. Из Вавилона позиционная система счёта перекочевала в Индию, из Индии арррабские завоеватели перенесли её в Евррропу! А вы — на ослах… Нет, я этого не переживу! Я расстррроен… Я рассеррржен… Мне дурррно…

Тут он завертел свой барабан с невероятной скоростью, и оттуда фонтаном брызнули «всевозможные нумерации», с которыми Чит не успел познакомиться. Их было столько, что он испугался. Ещё немного — и они засыпали бы его с головой! К счастью, в это время откуда-то появилась Ари и увела его прочь от разъярённого лотерейщика.

Гармония

На сей раз они шли довольно долго. И всё-таки Чит не успел ни соскучиться, ни утомиться. По обе стороны стеклянного коридора проплывали такие чудесные, такие солнечные картины! Раскачивались на ветру раскидистые, необычайной красоты деревья. Плавно и неспешно сменяли друг друга величавые статуи, храмы, дома — такие все разные, такие непохожие! И такие — всякий раз по-новому — складные, стройные, соразмерные…

— Вот-вот, стройные и соразмерные, — подтвердила Ари, словно угадав мысли Чита (или он незаметно для себя говорил вслух?). — Стройные, соразмерные, гармоничные, — продолжала она. — Последнее определение, пожалуй, самое точное. Гармония — именно так называем мы всякое проявление соразмерности и красоты. Гармонией, кстати, называется и следующая наша с тобой остановка.

И тут они очутились у подножия широкой лестницы, которая вела к великолепному зданию. Чит уже видел такое в одной книжке и сразу догадался, что здание древнегреческое, с колоннами и треугольной шапочкой наверху. Помнится, шапочка называется фронтóном. Но вот что удивительно: на фронтоне красовалась лепная пятиконечная звезда, обведённая лепной же пятиугольной рамкой. Увидав звезду, Чит сперва обрадовался, а потом задумался: советская звезда — и вдруг в Древней Греции! С чего бы это?

Но Ари сказала, что пятиконечная звезда известна людям с глубокой древности. Фигуру эту часто изображали древние вавилоняне. В Древней Греции её избрали своей эмблемой пифагорейцы — последователи знаменитого Пифагора. А Пифагор хорошо знал вавилонскую математику и позаимствовал из неё немало любопытного. В том числе, может быть, и этот звёздчатый пятиугольник.

— А что в нём любопытного? — заинтересовался Чит.

— Гармоническое сочетание частей. Недаром в древности пятиконечная звезда была символом здоровья, а здоровье — тоже гармония: пропорциональное сложение, согласованная работа всех органов. Вот и в звёздчатом пятиугольнике древние подметили замечательную пропорцию, соотношение частей, которое назвали золотым сечением. Чтобы вычертить пятиугольную звезду, надо построить пятиугольник с одинаковыми сторонами и соединить его вершины — иными словами, провести диагонали. Из этих-то диагоналей и образуется звезда. Как видишь, — сказала Ари, указывая на фронтон, — каждая диагональ делится здесь другой диагональю на две части: мéньшую и бóльшую. Так вот, короткая часть во столько раз меньше длинной, во сколько длинная меньше всей диагонали в целом. Но самое интересное, что подобное соотношение частей постоянно встречается в природе. Его можно обнаружить всюду. В строении человека, животных, растений…

— Так, может быть, древние вовсе не изобрели золотого сечения, а просто подсмотрели его у природы? — предположил Чит.

— Вполне вероятно. Сперва подсмотрели, а потом стали пользоваться своим открытием, когда хотели создать что-либо совершенное, гармоничное. Впрочем, золотое сечение — оно используется главным образом в изобразительном искусстве и архитектуре — всего лишь одно из проявлений гармонии. А вообще-то гармония — понятие широкое. Есть гармония в стихах, в танцах. Есть она и в музыке, что, кстати сказать, убедительно показал Пифагор в своём труде о гармонии.

— Не понимаю, — задумался Чит. — Ты говорила, Пифагор — математик?

— Ну и что же! Пифагорейцы, надо тебе знать, изучали четыре науки: арифметику, геометрию, астрономию и музыку.

— Какая же музыка наука? — фыркнул Чит. — Она же искусство.

— Искусство, основанное на числах, — возразила Ари. — Пифагорейцы придавали числам особое значение. Они поклонялись им как божеству. Числа, по их мнению, управляют мировым порядком. На числах основана гармония Вселенной… Ну, тут они, пожалуй, хватили через край. И всё-таки пифагорейцы были настоящими учёными. Они успешно продолжили и развили то, что почерпнули у вавилонян, и сами открыли немало нового в области чисел. О числах, которыми занимались пифагорейцы, можно говорить долго. Но я познакомлю тебя только с несколькими — хотя бы с этими четырьмя: 1, 2, 3, 4. Пифагор относился к ним с особой нежностью: ведь с их помощью он заставил одну-единственную музыкальную струну издавать звуки самой разной высоты.

— И как же он этого добился?

— Использовал отношения своих любимых чисел.

Перейти на страницу:

Похожие книги