Читаем В погоне за красотой полностью

Привлекая неизбежную аналогию, можно сопоставить наше положение с жителем горного района Земли, пытающегося при помощи геодезических наблюдений установить, что поверхность всей Земли — сфера. При этом область его наблюдений очень и очень ограниченна. Каких-нибудь несколько километров. Очевидно, наш физик окажется в малоприятном положении.

Если даже он сможет установить по своим измерениям, что в среднем радиус кривизны его участка поверхности 6400 километров (примерный радиус Земли), у него не будет стопроцентной уверенности, что в других недоступных ему участках поверхность планеты имеет ту же кривизну. И неизбежно он окажется на том самом пути, который столь усердно предавал анафеме Исаак Ньютон. Он начнет выдвигать гипотезы.

Это и есть удел реальных физиков, когда их спрашивают о геометрии мира в целом.

Здесь я снова предпочитаю остановиться, потому что более интересное и интригующее место найти невозможно.

Сейчас мы оказались перед проблемами, при мысли о которых каждый думающий человек невольно испытывает холодок на коже. И о таких вещах стоит говорить со вкусом и подробно. Либо же не говорить вовсе.

А нам, пожалуй, пора подвести некоторые итоги, а также выполнить неприятное: сообщить по крайней мере об одном главном недостатке всей этой книги.

Два главнейших итога были непосредственным следствием неевклидовой геометрии.

Первое — создание аксиоматики и в дальнейшем математической логики. Это было сделано Гильбертом — мы уже называли его имя. У нас о ней рассказано очень грубо и неточно. Особенно это относится к проблеме полноты аксиом. Сделать лучше можно было, но, к сожалению, лишь существенно затянув наш разговор. Во всяком случае, когда писалась книга, автор не представлял, как можно коротко, точно и понятно рассказать об аксиоматике.



Итак, об аксиоматике было сказано очень мало. И неточно. Единственное, что мне остается в утешение, — небольшая реклама.

Весь круг вопросов, связанных с аксиоматикой, поражает своим изяществом. Даже сама постановка многих проблем порой неожиданна до невероятности. Особенно это относится к проблеме полноты.

Я снова ничего не буду говорить по существу, но для иллюстрации просто сообщу об одном результате. Уже в тридцатые годы нашего века была доказана следующая теорема.

Пусть у вас имеется некоторая логическая система. Базис ее — Основные Понятия и аксиомы. Например, евклидова геометрия. Если эта логическая система «достаточно мощная» (что это значит — мы, естественно, уточнять не будем), то всегда могут быть сформулированы такие теоремы, которые в рамках этой системы нельзя ни доказать, ни опровергнуть.

На первый взгляд кажется, что дело в нехватке аксиом. Но суть не в этом. Сколько бы аксиом ни брать в основу, как бы ни дополнять нашу систему, странные утверждения, о которых нельзя высказать ничего определенного, все равно останутся.

После того как была доказана эта удивительная теорема, вся проблема непротиворечивости стала выглядеть по-иному.

Но обо всем этом мы умолчали. Так же как и о совершенно уж неожиданном применении математической логики в практике. Имеются в виду, конечно, электронно-вычислительные машины.

Чуть больше, хотя тоже, конечно, очень мало, мы говорили о второй линии развития. О линии, которая проходит через риманову геометрию к общей теории относительности.

И тут совершенно необходимо добавить лишь одно. Вся история развития неевклидовой геометрии, быть может, наиболее яркий пример неожиданных поворотов в развитии науки.

Казалось бы, предельно абстрактные, умозрительные, сугубо теоретические размышления математиков удивительным образом оказались исключительно важны не только для физиков, но и для инженеров.

Глава 12

Эйнштейн



Сущность, природа любого исключительного дарования загадочны.

Это утверждение достаточно банально.

Мы должны с горечью констатировать, что, по существу, и механизм работы и даже, более того, грубая блок-схема изумительного счетно-решающего устройства — нашего мозга — остаются тайной науки. Мы совершенно не представляем, как именно, по какой гениальной схеме эволюция объединила примерно 14–17 миллиардов нейронов — элементарных ячеек этого устройства.

Мы не можем толково ответить даже на такой напрашивающийся вопрос: «Чем именно различаются мозг человека и мозг какого-либо животного?», и вынуждены отделываться либо общими феноменологическими рассуждениями — это епархия биологов, либо блестящими и остроумными, но, увы, бессодержательными парадоксами — это удел писателей.

И уж безусловно, мы не в состоянии сказать, чем именно отличается мозг гениального (или даже проще — талантливого) человека от мозга рядового жителя Земли. Более того, мы не имеем даже оснований утверждать, что какие-либо органические отличия подобного рода существуют.

Возможно, почти в каждом гибнет какой-то неведомый миру исключительный талант. Эта идея — весьма привлекательная и утешительная для нашего самолюбия — в свое время была с наслаждением развита Марком Твеном.

Она, безусловно, крайне подозрительна. Но объективных данных, показывающих, что все это нелепость, нет.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

700 задач по математике. Все типы задач курса начальной школы. Учимся считать деньги. 1-4 классы
700 задач по математике. Все типы задач курса начальной школы. Учимся считать деньги. 1-4 классы

Как сделать так, чтобы ребёнок с удовольствием решал задачи по математике? Детям нравится самостоятельно делать покупки в магазине. При этом они решают в уме весьма непростые задачи по математике, связанные с подсчётом денег, покупок. Но в курсе математики начальной школы сюжеты задач часто далеки от практического, жизненного интереса ученика. А между прочим, даже в тестах экзамена по математике в 9 классе наряду с разделами алгебры и геометрии есть раздел с названием «Реальная математика», в который включены и задачи, требующие умения считать деньги. Данное пособие содержит задачи по всем основным разделам курса математики для начальной школы. Однако решение всех видов и типов задач основано на использовании практических навыков — ребёнок считает, сколько что стоит, знакомится с валютой разных стран. Такой подход будет способствовать развитию познавательных интересов учащихся, усилит развивающие и воспитательные функции урока, реализует межпредметные связи в процессе изучения математики. Пособие можно использовать на уроках математики для объяснения, закрепления изученного материала; для контроля знаний; в качестве дополнительных заданий отдельным ученикам; для восполнения пробелов в знаниях учащихся, а также для занятий дома.

Елена Алексеевна Нефедова , Ольга Васильевна Узорова

Математика