Хотя после работы Гёделя стало ясно, что намеченная Гильбертом программа невыполнима, его усилия не пропали даром — в ходе исследований возникла новая ветвь математики, касавшаяся теории доказательств и получившая название метаматематики. Это привело к невиданному углублению идей и развитию методов математической логики, что оказалось потом полезным при разработке алгоритмических языков для быстродействующих вычислительных машин.
Аксиоматизация бесконечности.
Иной путь преодоления трудностей теории бесконечных множеств выбрали математики, начавшие строить для нее систему аксиом. Одна из этих систем была предложена в 1908 г. Цермело и усовершенствована потом А. Френкелем. В аксиоматике Цермело — Френкеля описываются свойства отношения принадлежности x∈y, с помощью которого определяются отношения включения x⊂z у для множеств и понятие равенства множеств. Формулируются аксиомы, утверждающие, что два множества, содержащие одни и те же элементы, равны, а равные множества содержатся в одних и тех же множествах. Далее идут аксиомы, кодифицирующие правила составления множеств — образование пары множеств и объединения любой совокупности множеств. Кроме того, вводится аксиома о существовании множества, составленного из всех подмножеств данного множества. Наконец, к той же группе аксиом относится правило, позволяющее выделять из данного множества его подмножество, зная некоторые свойства его элементов. Эта аксиома отсекает парадоксальные множества, предложенные Кантором, Бурали-Форти и Расселом,- все они задавались свойствами своих элементов, но не были подмножествами какого-то "законного" множества.
Из указанных выше аксиом можно получить существование пустого множества, а также из каждого множества x получить новое множество {x}, единственным элементом которого является x. В систему аксиом Цермело — Френкеля входит, разумеется, аксиома выбора. Кроме того, в этой системе содержится аксиома о том, что образ множества при некотором отображении является множеством. Наконец, в этой системе есть аксиома бесконечности, которая по сути дела утверждает, что существует бесконечное множество натуральных чисел (хотя в ее формулировку это понятие и не входит).
Для любой системы аксиом критическими являются два вопроса: нельзя ли вывести из нее два противоречащих друг другу утверждения и можно ли с ее помощью доказать или опровергнуть любое утверждение, формулируемое в относящихся к ней терминах? Сторонники системы аксиом Цермело — Френкеля усматривают доказательство ее непротиворечивости в том, что до сих пор из нее не удалось вывести противоречивых утверждений (что, впрочем, не гарантирует того же в дальнейшем). В качестве же проверки силы этой системы аксиом был поставлен вопрос о возможности доказать или опровергнуть на ее основе континуум-гипотезу Кантора. Однако и в этом направлении исследования привели к совершенно удивительным результатам.
Началось с того, что в 1939 г. тот же Курт Гёдель доказал невозможность опровержения гипотезы континуума. Присоединив к системе аксиом теории множеств утверждение Кантора, он получил непротиворечивую систему аксиом (разумеется, эта непротиворечивость имела относительный характер при условии, что все остальные аксиомы этой системы не противоречили друг другу).
Но уже давно Лузин предвидел, что может возникнуть парадоксальная ситуация, когда аксиомам теории множеств не будут противоречить ни континуум-гипотеза, ни ее отрицание. В 1963 г. Поль Коэн[109]
доказал, что дело обстоит именно так. Ему удалось доказать, что из системы аксиом Цермело — Френкеля нельзя вывести континуум-гипотезу. Кроме того, оказалось, что аксиома выбора не зависит от остальных аксиом Цермело — Френкеля подобно тому, как аксиома о параллельных не может быть ни доказана, ни опровергнута на основе остальных аксиом геометрии. При этом выяснилось, что к системе аксиом, полученной из системы Цермело — Френкеля заменой аксиомы выбора на ее отрицание, можно без противоречия присоединить и утверждение о невозможности полной упорядоченности континуума. Почти одновременно с Коэном близкие (и даже более сильные) результаты получил чешский математик П. Вопенка.Брэдли Аллан Фиске , Брэдли Аллен Фиске
Биографии и Мемуары / Публицистика / Военная история / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Исторические приключения / Военное дело: прочее / Образование и наука / Документальное