Уравнения роста как причинные законы здесь схожи, но только при гиперболическом росте численность популяции устремляется к бесконечности за конечный промежуток времени, что приводит, по его мнению, к режиму с обострением, выход из которого С.П. Капица, используя терминологию термодинамики, называет фазовым переходом. В этом, считает С.П. Капица, и состоит главный секрет гиперболического роста со всеми необходимыми для его «феноменологии» физикалистскими следствиями.
Представляется совершенно недопустимым ставить в один ряд столь разные для экологии популяций законы роста, один из которых распространен повсеместно, тогда как другие два как
Линейный закон, как мы уже отмечали ранее, дает постоянный, не зависящий от растущей численности прирост, что выглядит как полная несообразность. Гиперболический рост населения Земли, происходящий
Экология популяций – это не физика, у нее свои законы и главный из них – закон экспоненциального роста, который, по мнению физика (!), лауреата нобелевской премии В.Л. Гинсбурга, является первым и важнейшим законом (или даже принципом) экологии популяций.
И который утверждает, что естественное состояние популяции – это рост или уменьшение по экспоненте. Это столь же важный закон для экологии популяций, как первый закон Ньютона для физики. Ни одна популяция, принадлежащая какому-либо виду из всех когда-либо существовавших в природе, не росла в соответствии со степенным
Причина здесь в особенностях нелинейного степенного роста, которые не соответствуют никакому природному репродуктивному процессу. Следовательно, причинная модель степенного роста неприменима для описания динамики изменения численности популяций.
И если численность какой-то популяции, как, например, численность человечества все-таки растет по степенному закону, то такое возможно лишь потому, что закон, связывающий скорость роста с численностью, причинным законом в этом случае не является.
Главный закон роста численности изолированной популяции
В основе любых моделей лежат некоторые предположения. Ценность модели определяется тем, насколько ее характеристики соответствуют свойствам моделируемого объекта. Одним из самых фундаментальных предположений, лежащим в основе всех моделей роста, является предположение о пропорциональности скорости роста численности популяции – самой этой численности, будь то популяция зайцев, будь то популяция клеток.
В основе этого предположения лежит тот общеизвестный факт, что важнейшей характеристикой живых систем является их способность к размножению. Для многих одноклеточных организмов или клеток, входящих в состав клеточных тканей – это просто деление, то есть удвоение числа клеток через определенный интервал времени, называемый характерным временем деления.
Для сложно организованных растений и животных размножение происходит по более сложному закону, но в наиболее простых и адекватных моделях предполагается, что скорость размножения популяции пропорциональна численности этой популяции. Закон экспоненциального роста справедлив
Математическое выражение, описывающее увеличение скорости изменения величины с ростом самой этой величины, называют автокаталитическим членом (авто – само, катализ – изменение скорости реакции). Во многих популярных руководствах по экологии говорится, что экспоненциальный рост популяций возможен только в особо оптимальных условиях при отсутствии каких-либо ограничивающих факторов.
Это не совсем верно, поскольку единственное необходимое и достаточное условие такого роста – это постоянство коэффициента естественного прироста, определяющего для размножающихся организмов скорость их размножения.
Так, например, проводя серию наблюдений за ростом популяции каких-либо одноклеточных организмов в разных температурных условиях, нетрудно заметить, что с уменьшением температуры скорость деления клеток падает, но экспоненциальный характер роста сохраняется [13].
Иногда желая принизить значение экспоненциального роста популяции, авторы акцентируют внимание на его непродолжительности, на то, что он почти никогда не встречается в природе и, следовательно, может рассматриваться, по их мнению, лишь как демонстрация потенциальной возможности популяции к росту.