В ней впервые было сформулировано положение о том, что численность популяции в благоприятных условиях растет по закону геометрической прогрессии. Сам русский термин «популяция» происходит от английского «population» – население. Мальтус был первым, кто применил математику в экологии, если не считать итальянского математика Фибоначчи.
В своей работе Мальтус четко сформулировал необходимые идеализации, без которых стала бы невозможной математическая постановка задачи: однородность и изолированность популяции, неограниченность ресурсов, постоянство коэффициентов рождаемости и смертности, отсутствие взаимодействия, способного нелинейно сказаться на приросте.
Закон Мальтуса считается первым и самым важным законом экологии популяций. Законы экологии популяций, по мнению В.Л. Гинсбурга, напоминают законы физики:
«Закон Мальтуса описывает, как растут или уменьшаются популяции, когда больше ничего не происходит. Он описывает естественное состояние популяций: как они ведут себя в отсутствие каких-либо внешних факторов (Гинзбург, Коливан 2004)». «…»
«Гинзбург (1986) заметил, что закон Мальтуса играет такую же роль в экологии, как Первый закон Ньютона в физике. До Галилея и Ньютона Аристотель утверждал, что естественным состоянием тел является покой, а движение возникает только тогда, когда к объекту приложена сила.
Господин Исаак Ньютон, однако, доказал, что верно обратное: постоянное движение является естественным состоянием, а непостоянное движение и покой возникают только тогда, когда к объекту приложена сила. Его первый закон содержит концепцию инерции, которая является «стремлением тела сопротивляться изменениям своей скорости» (Кребс 2001). Подобно первому закону Ньютона, закон Мальтуса говорит о том, что естественное состояние популяции – не покой (т. е. постоянная популяция), а движение (т. е. экспоненциальный рост или уменьшение).
И если популяции не растут или уменьшаются экспоненциально, это происходит потому, что внешняя сила (т. е. что-то в окружающей среде) изменяет уровень рождаемости и/или смертности (Гинзбург 1986, Гинзбург, Коливан 2004). Эта внешняя сила может быть как небиотическим, так и биотическим фактором как, например, «уровень межвидового заполнения» и плотность всех остальных видов в сообществе, которые могли бы взаимодействовать с основными видами (Турчин 2003)» [13].
Дадим определение экспоненциальному росту сначала для колонии микроорганизмов, где смертность отсутствует, а затем и для произвольной популяции организмов: