Также существует третье начало термодинамики: энтропия достигает минимума при минимальной возможной температуре, равной абсолютному нулю. Но что будет играть роль «температуры» в нашей аналогии в контексте черных дыр? Ответ —
И наконец, необходимо вспомнить о нулевом начале термодинамики: если две системы находятся в термодинамическом равновесии с третьей системой, то они находятся в термодинамическом равновесии друг с другом. Аналогичное утверждение для черных дыр сформулировать просто: «на горизонте событий стационарной черной дыры значение поверхностной гравитации повсюду одинаково». И это правда.
Итак, между законами термодинамики, как они были сформулированы на протяжении XIX века, и «законами механики черных дыр», как они были сформулированы в 1970-х годах, существует идеальная аналогия. Различные элементы аналогии приведены в следующей таблице.
Термодинамика<=>Черные дыры
Энергия<=>
МассаТемпература<=>
Поверхностная гравитацияЭнтропия<=>
Площадь горизонтаОднако теперь перед нами встал важный вопрос, один из тех, которые в науке чаще всего ведут к великим открытиям: насколько серьезно следует относиться к этой аналогии? Может быть, это всего лишь забавное совпадение? Или она все же отражает какую-то основополагающую глубинную истину?
Это абсолютно разумный вопрос, а вовсе не пустое подведение к предсказуемому ответу. Совпадения иногда случаются. Когда ученые натыкаются на любопытную связь между двумя, казалось бы, абсолютно непохожими вещами, такими как термодинамика и черные дыры, это может оказаться для них ключом к важному открытию, а может остаться простой случайностью. Основываясь на собственной интуиции, разные люди высказывают разные мнения относительно того, стоит искать здесь глубинные связи или нет. В конечном итоге мы сможем подойти к проблеме с научной стороны и прийти к обоснованному заключению, но пока что ответ не очевиден.
Гипотеза Бекенштейна об энтропии
Серьезнее всего к аналогии между термодинамикой и механикой черных дыр отнесся Яаков Бекенштейн, который был тогда аспирантом Джона Уилера. В то время как все физическое сообщество заинтересованно изучало физику элементарных частиц (это были героические дни 1960-х и 1970-х годов, период становления Стандартной модели), Уилер, в свободное от сочинения емких замечаний время, с энтузиазмом продвигал область квантовой гравитации (и общую теорию относительности в целом). Влияние Уилера чувствовалось не только посредством его идей — совместно с Брайсом Девиттом они впервые обобщили уравнение Шрёдингера из квантовой механики для гравитационной теории, но и через его учеников. Помимо Бекенштейна, под началом Уилера успели получить степень кандидата наук (Ph.D.) немало ученых, которые сегодня являются признанными лидерами в исследовании гравитации, включая Кипа Торна, Чарльза Мизнера, Роберта Уолда и Уильяма Унру, не говоря уж о Хью Эверетте, а также первом студенте Уилера, некоем Ричарде Фейнмане.
Итак, в начале 1970-х годов Принстон был плодовитой средой для исследований черных дыр, и Бекенштейн находился в центре событий. В своей диссертации он сделал простое, но исключительно эффектное предположение: связь между механикой черных дыр и термодинамикой — это не просто аналогия. Это тождество. В частности, Бекенштейн использовал идеи из теории передачи информации, доказывая, что площадь горизонта событий черной дыры не просто
На первый взгляд это предположение кажется несколько неправдоподобным. Больцман уже рассказал нам, что такое энтропия: это мера количества микроскопических состояний системы, неразличимых с макроскопической точки зрения. Казалось бы, выражение «у черных дыр нет волос» подразумевает, что у большой черной дыры мало состояний, ведь она полностью характеризуется значениями массы, заряда и углового момента. Однако здесь на сцену выходит Бекенштейн и заявляет, что энтропия черной дыры астрофизических размеров ошеломительно велика.