В чем тут дело, станет окончательно ясным, если рассмотреть некоторые свойства энтропии.
Начнем с того, что энтропия имеет еще одно важное свойство, роднящее ее с «теплородом». Она может не только подводиться к телу вместе с теплотой (или отводиться от него), но и, в отличие от теплоты, накапливаться в теле, «содержаться» в нем. При работе двигателя Карно или теплового насоса энтропия, как мы видели, «протекает» через них (рис. 3.2). Сколько ее входит, столько и выходит. Но при нагреве вещества путем подвода к нему теплоты энтропия поступает, но не выходит: она «накапливается» в веществе. Теплота исчезает, превращаясь во внутреннюю энергию, а энтропия увеличивается. Напротив, при отводе теплоты энтропия тела убывает. Таким образом, энтропия может как содержаться в телах, так и посредством теплоты передаваться от одного тела к другому.
Соотношением S = Q/T можно пользоваться тогда, когда все количество теплоты Q отдается при одной и той же температуре Т. На практике температура Т в процессе подвода теплоты большей частью меняется, так как тело нагревается (а при отводе охлаждается). Дня каждой малой порции теплоты Q температура будет уже другой; поэтому энтропию подсчитывают для каждой порции теплоты отдельно в виде S = Q/T и потом суммируют порции энтропии S. В целом количество энтропии S будет равно сумме малых изменений величины S; S = Q/T,, а при переходе к бесконечно малым
Из соотношения S = Q/T следует, что поток теплоты можно представить как произведение температуры T, при которой она передается, на поток энтропии:
Q = T•S (3.5)
Эта формула имеет глубокий физический смысл. Обратим внимание на то, что при передаче энергии в форме механической работы ее количество, как и по формуле (3.5), тоже определяется произведением двух аналогичных величин.
Возьмем два примера — по одному для каждого случая (рис. 3.3): работу сжатия газа в цилиндре (а) и нагрев газа в теплоизолированном сосуде (б). В первом случае работа l равна произведению силы Р (равной произведению давления р на площадь поршня F) на путь h (равный отношению изменения объема V к площади поршня F). Так как по мере сжатия газа сила Р должна расти, работу надо считать по малым отрезкам h, на которых ее можно принимать постоянной. Тогда работа будет составлять произведение двух величин:
l = p•V. (3.6)
Нетрудно видеть, что во втором случае, аналогично первому, для некоторого элементарного количества теплоты Q, при передаче которого Т неизменна,
q = T•S. (3.7)
Таким образом, передача энергии в двух формах — теплоты и работы (несмотря на их принципиальную разницу — неорганизованную форму в первом случае и организованную во втором) может быть выражена аналогично. Количество энергии в обоих случаях (3.6) и (3.7) выражается произведением двух величин.
Первая из них (давление р для работы и температура Т для теплоты) — это силы (потенциалы), которые вызывают данную форму передачи энергии. Вторая — это «так называемые координаты, изменение которых показывает наличие данной формы передачи энергии. Если координата (V или S) не изменилась (т. е. V или S равны нулю), то L и Q тоже будут равны нулю и никакой передачи энергии не произойдет.
Первые величины называют еще
Понятие об интенсивных и экстенсивных факторах имеет очень широкий смысл, далеко выходящий за пределы термодинамики. Интенсификация любого процесса (даже в народнохозяйственном плане) достигается не за счет увеличения экстенсивного фактора, а только посредством интенсивного фактора. В случае передачи энергии в форме теплоты таким фактором служит
Может возникнуть естественный вопрос: если изменение энтропии, равное нулю, показывает отсутствие передачи энергии в форме теплоты, то как быть с тепловой машиной Карно? Ведь к ней теплота и подводится, и отводится, а энтропия постоянна?
Это противоречие кажущееся: