Читаем Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии полностью

Уменьшение энтропии в изолированных системах второй закон запрещает: оно в принципе невозможно: Примеров таких воображаемых невозможных процессов можно привести много: это самопроизвольный переход теплоты от холодного тела с температурой Т 2к более теплому с температурой Т 1> Т 2, например, закипание чайника с водой, поставленного на лед (или замерзание в жару воды в водопроводной трубе). Нетрудно видеть (рис. 3.5), что энтропия при этом уменьшалась бы, поскольку энтропия S воды в чайнике возрастала бы на Q/T 1, а энтропия S льда уменьшалась на Q/T 2. Двигатель, работающий на «концентрации тепловой энергии, отводимой из окружающего пространства» (т. е. производящий работу или электроэнергию из внутренней энергии равновесной окружающей среды) [53], относился бы к этой же группе нереализуемых систем. Действительно, получая некоторое количество теплоты Q O.C.от среды при ее температуре T O.C.(а с ней неизбежно и соответствующую энтропию S = Q O.C./T O.C., он выдавал бы некоторую работу, в которой энтропии нет. К чему это привело бы?

Рис. 3.5. Чайник, кипящий вопреки второму закону термодинамики, но в согласии с первым законом

Если бы вся теплота Q O.C.превратилась в работу, то энтропия исчезла бы совсем. Если же в работу L превратилась бы только часть теплоты Q O.C., а остальную ее часть Q 2двигатель отдал бы обратно, то все равно отданная энтропия была бы меньше, чем полученная так как Q 2< Q O.C.и S 2= Q 2/T O.C.< Q O.C./T O.C.

Чтобы завершить знакомство с энтропией, остается затронуть еще один аспект этой замечательной величины — ее статистическую трактовку. Она была дана двумя великими физиками — Л. Больцманом (1844-1906 гг.) и М. Планком (1858-1947 гг.).

Они подошли к понятию энтропии с другой стороны, так сказать, «изнутри», от молекулярного строения материи. Больцман исследовал законы поведения всего множества молекул, составляющих взаимодействующие части системы, и установил, что существует непосредственная связь энтропии с тем состоянием, в котором эти молекулы находятся.

Каждая молекула обладает в каждый определенный момент определенной энергией, связанной с ее движением и взаимодействием с другими молекулами. Общая внутренняя энергия вещества представляет собой сумму энергий этих частиц. Поскольку молекулы постоянно находятся в хаотическом движении и взаимодействуют между собой, между ними происходит энергетический обмен, приводящий к тому, что энергия все время перераспределяется между ними. Поэтому каждый следующий момент соответствует уже другому микросостоянию системы с другим распределением энергии между молекулами.

Таким образом, микросостояниесистемы — это такое ее состояние в данный момент, при котором для каждой молекулы определены положение в пространстве и скорость. Это, если так можно выразиться, мгновенный снимок системы.

Изучить в такой ситуации хаоса и беспорядка, существующей в каждом микросостоянии, поведение каждой молекулы, чтобы предсказать ее поведение в дальнейшем, практически невозможно. Но это и не нужно: достаточно знать возможные варианты общегоповедения системы, т. е. число всех ее возможных микросостояний.

Число wтаких микросостояний может быть очень велико, огромно, но оно все же не бесконечно, так как число молекул конечно, как и число энергетических уровней, на которых они могут находиться.

Но каково же будет состояние системы, определяемое общими характеристиками (плотность, энергия и т. д.), т. е. ее макросостояниев данных условиях? Какое из многочисленных микросостоянийона «выберет»? Оказывается, зная число и особенности различных возможных микросостояний, можно установить ее наиболее вероятное макросостояние. Этот закон будет статистическим,что, однако, ничуть не снижает его силы и надежности.

Чтобы показать, на чем он основан, используем наглядный пример, приведенный чл.корр. АН СССР Л.М. Биберманом.

Пусть на плоском подносе расположены несколько одинаковых монет. Каждая из них может лежать только в одном из двух положений — гербом вверх («орел») или вниз («решка»). Поскольку оба положения совершенно равновероятны, каждая монета может лечь вверх орлом или решкой; заранее предсказать это невозможно.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже