Читаем Величайшие математические задачи полностью

Родился Гаусс в бедной семье в городе Брауншвейге в Германии. Его мать Доротея была неграмотной и не смогла даже записать дату рождения ребенка. Однако она помнила, что было это в 1777 г., за восемь дней до праздника Вознесения. Позже Гаусс сам вычислил точную дату своего рождения при помощи разработанной им формулы расчета дат Пасхи. Отец ученого Гебхард происходил из крестьянской семьи, но зарабатывал на жизнь разной работой: копал канавы, был садовником, уличным мясником, счетоводом похоронной конторы. А их сын оказался вундеркиндом: рассказывали, что уже в трехлетнем возрасте он исправлял отцовские ошибки в арифметике. Его способности, распространявшиеся помимо математики и на языки, побудили герцога Брауншвейгского оплатить обучение мальчика в Брауншвейгском университете. Будучи студентом, Гаусс самостоятельно открыл для себя несколько важных математических теорем, доказанных знаменитыми учеными, такими как Эйлер. Однако его теорема о правильном 17-угольнике грянула как гром среди ясного неба.

К тому времени прошло уже 140 лет с тех пор, как была установлена тесная связь между геометрией и алгеброй. В приложении к «Рассуждению о методе…» Рене Декарт формализовал идею, давно витавшую в воздухе: представление о системе координат. По существу, он взял евклидову девственно чистую плоскость — пустой лист бумаги — и превратил его в лист, расчерченный на квадраты (инженеры и ученые называют такую бумагу миллиметровкой). Для начала нарисуйте на бумаге две прямые линии, горизонтальную и вертикальную. Эти линии называются осями координат. Теперь можно определить положение любой точки на плоскости, задавшись вопросом: как далеко лежит эта точка в направлении вдоль горизонтальной оси и как далеко — вдоль вертикальной (см. рис. 5 слева). Эти два числа — а они могут быть как положительными, так и отрицательными, — дают исчерпывающее описание точки и называются ее координатами.



Все геометрические свойства точек, прямых, окружностей и т. д. можно перевести в алгебраические утверждения, связанные с соответствующими координатами. Очень трудно осмысленно говорить об этих связях без использования алгебры — точно так же, как трудно говорить о футболе без использования слова «гол». Поэтому на следующих страницах мне придется привести несколько формул. Они нужны для того, чтобы показать: у главных действующих лиц этой драмы есть имена, и отношения между ними прозрачны. Согласитесь, «Ромео» — это гораздо понятнее, чем «сын итальянского патриция, полюбивший красавицу-дочь заклятого врага своего отца». Наш Ромео будет носить прозаическое имя x, а его Джульетту будут звать y.

В качестве примера того, как геометрия превращается в алгебру, рис. 5 (справа) показывает, как найти уравнение окружности единичного радиуса с центром в начале координат, где пересекаются наши две оси. Отмеченная точка имеет координаты (x, y), так что у прямоугольного треугольника на рисунке длина горизонтальной стороны равна x, а вертикальной — y. Самая длинная сторона треугольника представляет собой радиус окружности и, соответственно, равняется единице. Теорема Пифагора гласит, что сумма квадратов двух координат равняется 1. В символьном виде это звучит так: точка с координатами x и y лежит на окружности тогда и только тогда, когда ее координаты удовлетворяют условию x² + y² = 1. Символьная характеристика окружности получилась краткой и точной; она наглядно показывает, что речь в данном случае действительно идет об алгебре. И наоборот, любая алгебраическая характеристика пары чисел, любое уравнение с участием x и y можно интерпретировать как геометрическое утверждение о точках, прямых, окружностях или более сложных кривых{8}.


Фундаментальные алгебраические уравнения включают, в частности, многочлены — комбинации различных степеней неизвестной величины x, где каждая степень x умножается на некое число, называемое коэффициентом. Наибольшая степень x есть степень многочлена. К примеру, уравнение

x4 − 3x3 − 3x2 + 15x10 = 0

содержит многочлен, начинающийся с x4, т. е. четвертой степени. Коэффициенты здесь равны 1, −3, −3, 15 и −10. У этого уравнения четыре различных решения: x = 1, 2, √5 и √5. Для этих чисел левая часть уравнения равняется нулю, т. е. правой части. Многочлены первой степени, такие как 7x + 2, называются линейными и содержат только первую степень неизвестного. Уравнения второй степени, такие как x² − 3x + 2 = 0, называются квадратными и содержат вторую степень неизвестного — квадрат. Уравнение окружности содержит вторую переменную y. Однако, если у нас есть второе уравнение, связывающее x и y, к примеру уравнение какой-нибудь прямой, мы можем выразить в нем y через x и преобразовать уравнение окружности так, чтобы оно содержало только x. Это новое уравнение говорит нам о том, где прямая пересекается с окружностью. В данном случае новое уравнение является квадратным и имеет два решения. Так алгебра отражает геометрию, в которой прямая пересекает окружность в двух вполне конкретных точках.

Перейти на страницу:

Все книги серии Библиотека фонда «Династия»

Ружья, микробы и сталь
Ружья, микробы и сталь

Эта книга американского орнитолога, физиолога и географа Джареда Даймонда стала международным бестселлером и принесла своему создателю престижнейшую Пулитцеровскую премию, разом превратив академического ученого в звезду первой величины. Вопрос, почему разные регионы нашей планеты развивались настолько неравномерно, занимает сегодня очень многих — по каким причинам, к примеру, австралийские аборигены так и не сумели выйти из каменного века, в то время как европейцы научились производить сложнейшие орудия, строить космические корабли и передавать накопленные знания следующим поколениям? Опираясь на данные географии, ботаники, зоологии, микробиологии, лингвистики и других наук, Даймонд убедительно доказывает, что ассиметрия в развитии разных частей света неслучайна и опирается на множество естественных факторов — таких, как среда обитания, климат, наличие пригодных для одомашнивания животных и растений и даже очертания и размер континентов. Приводя множество увлекательных примеров из собственного богатого опыта наблюдений за народами, которые принято называть «примитивными», а также из мировой истории, Даймонд выстраивает цельную и убедительную теорию, позволяющую читателю по-новому осмыслить скрытые механизмы развития человеческой цивилизации.

Джаред Даймонд , Джаред Мэйсон Даймонд

Культурология / История / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное