Наглядным примером служит гипотеза Пойа, которую в 1919 г. выдвинул венгерский математик Дьердь Пойа. Он предположил, что по крайней мере половина всех целых чисел вплоть до заданной величины имеет нечетное число простых множителей. Повторяющиеся множители в данном случае учитываются отдельно, а начинаем мы с 2. К примеру, число простых множителей для предела 20 приведено в табл. 2, где последняя колонка отражает процент чисел до данного предела с нечетным числом простых множителей.
Все значения в последней колонке выше 50 %, а более обширные расчеты позволяют предположить, что это всегда так. В 1919 г., без всяких компьютеров, исследователи не смогли найти чисел, которые опровергли бы эту гипотезу. Но в 1958 г. Брайан Хазелгроув доказал при помощи аналитической теории чисел, что гипотеза Пойа неверна для некоего числа — числа, не превосходящего 1,845 × 10361
, если быть точным. Как только на сцене появились компьютеры, Шерман Леман показал, что гипотеза неверна для 906 180 359. К 1980 г. Минору Танака доказал, что минимальное из таких чисел 906 150 257. Так что вы могли бы собрать экспериментальные данные по всем числам почти до миллиарда и не понять, что гипотеза неверна.Тем не менее приятно знать, что число 906 150 257 необычайно интересно.
Разумеется, сегодняшние компьютеры, если их как следует запрограммировать, опровергли бы гипотезу Пойа в несколько секунд. Но иногда не помогают даже они. Классический пример — число Скьюза, где первоначально громадное количество численных данных указывало на то, что некая знаменитая гипотеза верна, но на самом деле она неверна. Это гигантское число появилось в задаче, тесно связанной с гипотезой Римана: аппроксимацией π
Таблица 2.
Процент чисел до заданного предела, имеющих нечетное число простых множителейЗвучит, кажется, исчерпывающе. Данные здесь сильнее, чем лучшие численные результаты, полученные до сих пор для гипотезы Римана. Но в 1914 г. Литтлвуд доказал, что эта гипотеза неверна — и как доказал! По мере того как
В 1933 г. его ученик, южноафриканский математик Стенли Скьюз, оценил, насколько большим должен быть
Эти числа слишком велики даже для прилагательного «астрономический», но дальнейшие исследования помогли снизить их до величин, которые уже можно охарактеризовать как космологические. В 1966 г. Леман заменил числа Скьюза на 101165
. Те Риеле в 1987 г. понизил эту оценку до 7 × 10370, а в 2000 г. Картер Бейз и Ричард Хадсон свели ее к 1,39822 × 10316. Затем Чжоу Куок Фай и Роджер Плаймен срезали еще немножко и довели ограничение до 1,39801 × 10316. Это изменение может показаться несущественным, но на самом деле данная оценка меньше предыдущей на 2 × 10312. А Саутер и Демишель еще улучшили этот результат, сведя его к 1,3971667 × 10316.Но пока суд да дело, в 1941 г. Аурел Уинтнер доказал, что маленькая, но ненулевая доля целых чисел удовлетворяет неравенству π