Читаем Величайшие математические задачи полностью

где коэффициенты равны +1 для чисел вида 4k + 1, −1 для чисел вида 4k + 3 и 0 для остальных. Греческую букву χ называют характером Дирихле, и это напоминает нам о том, какие именно знаки следует использовать.

Для римановой дзета-функции важен не только ряд, но и его аналитическое продолжение, придающее функции значения во всех комплексных точках. То же относится и к L-функции, и Дирихле определил подходящее аналитическое продолжение. Приспособив к случаю идеи, которые использовались для доказательства теоремы о распределении простых чисел, он сумел доказать аналогичную теорему о простых числах особых видов. К примеру, число простых чисел вида 5k + 1, меньших или равных x, асимптотически приближается к Li(x)/4; то же относится и к остальным трем случаям 5k + 2, 5k + 3, 5k + 4. Это означает, что простых чисел каждого вида бесконечно много.

Риманова дзета-функция — это особый случай L-функции Дирихле для простых чисел вида 1k + 0, т. е. для всех простых чисел. Обобщенная гипотеза Римана представляет собой очевидное обобщение оригинальной гипотезы: нули любой L-функции Дирихле либо имеют действительную часть, равную 1/2, либо являются тривиальными нулями, действительная часть которых отрицательна или больше единицы.

Если обобщенная гипотеза Римана верна, то верна и обычная его гипотеза. Многие следствия обобщенной гипотезы Римана аналогичны следствиям обычной. К примеру, схожие границы ошибки можно доказать для аналогичных версий теоремы о распределении простых чисел в применении к простым числам любого конкретного вида. Однако обобщенная гипотеза Римана подразумевает много такого, что совершенно отличается от всего, что мы можем вывести из обычной гипотезы Римана. Так, в 1917 г. Годфри Харди и Джон Литтлвуд доказали, что из обобщенной гипотезы Римана следует гипотеза Чебышева, в том смысле, что (буквально) простые числа вида 4k + 3 встречаются чаще, чем числа вида 4k + 1. Согласно теореме Дирихле, оба вида равновероятны в конечном итоге, но это не мешает простым числам вида 4k + 3 выигрывать у чисел 4k + 1, конечно, в правильной игре.

У обобщенной гипотезы Римана есть также важные следствия, имеющие отношение к проверке на простоту, такие как тест Миллера 1976 г., упомянутый в главе 2. Если обобщенная гипотеза Римана верна, то тест Миллера дает нам эффективный алгоритм проверки. Оценка эффективности более поздних тестов тоже зависит от обобщенной гипотезы Римана. Существуют и важные приложения для алгебраической теории чисел. Помните, в главе 7 говорилось, что новое определение идеальных чисел Куммера, данное Дедекиндом, привело к рождению новой фундаментальной концепции — понятия идеала. Разложение на простые множители в кольцах алгебраических целых чисел существует, но может не быть единственным. Разложение идеалов на простые множители работает много лучше: и существование, и единственность гарантированы. Так что имеет смысл заново рассмотреть все вопросы о множителях в терминах идеалов. В частности, существует понятие «простого идеала» — разумной и удобной аналогии простого числа.

Зная это, естественно спросить, есть ли у эйлеровой связи между обычными простыми числами и дзета-функцией аналог для простых идеалов. Если да, то весь мощный аппарат аналитической теории чисел применим к алгебраическим числам. Оказывается, это можно сделать, с глубокими и очень серьезными последствиями. Результат — дзета-функция Дедекинда — по одной такой функции на каждую систему алгебраических чисел. Существует глубокая связь между комплексными аналитическими свойствами дедекиндовой дзета-функции и арифметикой простых чисел в соответствующей системе алгебраических целых чисел. И, разумеется, существует аналог гипотезы Римана: все нетривиальные нули дедекиндовой дзета-функции лежат на критической линии. Понятие «обобщенная гипотеза Римана» теперь включает в себя и это утверждение.

Даже генерализация — еще не конец истории дзета-функции. Она вдохновила ученых на определение аналогичных функций в нескольких других областях математики — от абстрактной алгебры до теории динамических систем. Во всех этих областях существуют еще более масштабные аналоги гипотезы Римана. Некоторые из них даже доказаны. В 1974 г. Пьер Делинь доказал такой аналог для многообразий над конечными полями. Обобщения, известные как дзета-функции Сельберга, тоже удовлетворяют аналогу гипотезы Римана. То же можно сказать о дзета-функции Госса. Однако существуют другие обобщения — дзета-функции Эпштейна, для которых аналог гипотезы Римана неверен. Здесь бесконечное множество нетривиальных нулей лежит на критической линии, но некоторые — нет, что продемонстрировал Эдвард Титчмарш. С другой стороны, эти дзета-функции не имеют эйлеровой формулы в виде произведения и потому не похожи на римановы дзета-функции в аспекте, который вполне может оказаться принципиально важным.


Перейти на страницу:

Все книги серии Библиотека фонда «Династия»

Ружья, микробы и сталь
Ружья, микробы и сталь

Эта книга американского орнитолога, физиолога и географа Джареда Даймонда стала международным бестселлером и принесла своему создателю престижнейшую Пулитцеровскую премию, разом превратив академического ученого в звезду первой величины. Вопрос, почему разные регионы нашей планеты развивались настолько неравномерно, занимает сегодня очень многих — по каким причинам, к примеру, австралийские аборигены так и не сумели выйти из каменного века, в то время как европейцы научились производить сложнейшие орудия, строить космические корабли и передавать накопленные знания следующим поколениям? Опираясь на данные географии, ботаники, зоологии, микробиологии, лингвистики и других наук, Даймонд убедительно доказывает, что ассиметрия в развитии разных частей света неслучайна и опирается на множество естественных факторов — таких, как среда обитания, климат, наличие пригодных для одомашнивания животных и растений и даже очертания и размер континентов. Приводя множество увлекательных примеров из собственного богатого опыта наблюдений за народами, которые принято называть «примитивными», а также из мировой истории, Даймонд выстраивает цельную и убедительную теорию, позволяющую читателю по-новому осмыслить скрытые механизмы развития человеческой цивилизации.

Джаред Даймонд , Джаред Мэйсон Даймонд

Культурология / История / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное