где коэффициенты равны +1 для чисел вида 4
Для римановой дзета-функции важен не только ряд, но и его аналитическое продолжение, придающее функции значения во всех комплексных точках. То же относится и к
Риманова дзета-функция — это особый случай
Если обобщенная гипотеза Римана верна, то верна и обычная его гипотеза. Многие следствия обобщенной гипотезы Римана аналогичны следствиям обычной. К примеру, схожие границы ошибки можно доказать для аналогичных версий теоремы о распределении простых чисел в применении к простым числам любого конкретного вида. Однако обобщенная гипотеза Римана подразумевает много такого, что совершенно отличается от всего, что мы можем вывести из обычной гипотезы Римана. Так, в 1917 г. Годфри Харди и Джон Литтлвуд доказали, что из обобщенной гипотезы Римана следует гипотеза Чебышева, в том смысле, что (буквально) простые числа вида 4
У обобщенной гипотезы Римана есть также важные следствия, имеющие отношение к проверке на простоту, такие как тест Миллера 1976 г., упомянутый в главе 2. Если обобщенная гипотеза Римана верна, то тест Миллера дает нам эффективный алгоритм проверки. Оценка эффективности более поздних тестов тоже зависит от обобщенной гипотезы Римана. Существуют и важные приложения для алгебраической теории чисел. Помните, в главе 7 говорилось, что новое определение идеальных чисел Куммера, данное Дедекиндом, привело к рождению новой фундаментальной концепции — понятия идеала. Разложение на простые множители в кольцах алгебраических целых чисел существует, но может не быть единственным. Разложение идеалов на простые множители работает много лучше: и существование, и единственность гарантированы. Так что имеет смысл заново рассмотреть все вопросы о множителях в терминах идеалов. В частности, существует понятие «простого идеала» — разумной и удобной аналогии простого числа.
Зная это, естественно спросить, есть ли у эйлеровой связи между обычными простыми числами и дзета-функцией аналог для простых идеалов. Если да, то весь мощный аппарат аналитической теории чисел применим к алгебраическим числам. Оказывается, это можно сделать, с глубокими и очень серьезными последствиями. Результат — дзета-функция Дедекинда — по одной такой функции на каждую систему алгебраических чисел. Существует глубокая связь между комплексными аналитическими свойствами дедекиндовой дзета-функции и арифметикой простых чисел в соответствующей системе алгебраических целых чисел. И, разумеется, существует аналог гипотезы Римана: все нетривиальные нули дедекиндовой дзета-функции лежат на критической линии. Понятие «обобщенная гипотеза Римана» теперь включает в себя и это утверждение.
Даже генерализация — еще не конец истории дзета-функции. Она вдохновила ученых на определение аналогичных функций в нескольких других областях математики — от абстрактной алгебры до теории динамических систем. Во всех этих областях существуют еще более масштабные аналоги гипотезы Римана. Некоторые из них даже доказаны. В 1974 г. Пьер Делинь доказал такой аналог для многообразий над конечными полями. Обобщения, известные как дзета-функции Сельберга, тоже удовлетворяют аналогу гипотезы Римана. То же можно сказать о дзета-функции Госса. Однако существуют другие обобщения — дзета-функции Эпштейна, для которых аналог гипотезы Римана неверен. Здесь бесконечное множество нетривиальных нулей лежит на критической линии, но некоторые — нет, что продемонстрировал Эдвард Титчмарш. С другой стороны, эти дзета-функции не имеют эйлеровой формулы в виде произведения и потому не похожи на римановы дзета-функции в аспекте, который вполне может оказаться принципиально важным.