«Весьма вероятно, что все [нули кси-функции] действительны. Хотелось бы, конечно, иметь строгое доказательство этого факта, но после нескольких бесплодных попыток я отложил поиск такого доказательства, поскольку этого не требуется для непосредственных целей моего исследования».
Это заявление о кси-функции эквивалентно аналогичному заявлению о зависимой от нее дзета-функции. А именно: все нетривиальные нули дзета-функции представляют собой комплексные числа вида: они лежат на
Замечание Римана звучит достаточно небрежно, как будто высказано между делом и эта гипотеза не имеет особого значения. И это действительно так, если говорить только о программе Римана по доказательству теоремы о распределении простых чисел. Но во многих других вопросах верно обратное. Многие считают гипотезу Римана важнейшим из остающихся на сегодняшний день открытыми математических вопросов.
Чтобы понять, почему это так, мы должны последовать за рассуждениями Римана чуть дальше. В тот момент ученый был нацелен на теорему о распределении простых чисел. Его точная формула предлагала верный путь к этому достижению: нужно было разобраться в нулях дзета-функции или эквивалентной ей кси-функции. Полная риманова гипотеза для этого не нужна, достаточно доказать, что у всех нетривиальных нулей дзета-функции действительная часть лежит в промежутке от 0 до 1, т. е. что сами комплексные корни лежат на расстоянии не более 1/2 от римановой критической линии — в так называемой критической полосе. Это свойство нулей подразумевает, что сумма по всем нулям дзета-функции, фигурирующая в приведенной выше точной формуле, представляет собой конечную константу. Асимптотически для больших
Риман так и не довел свою программу до логического конца. Более того, он никогда больше ничего не писал по этому вопросу. Но два других математика, приняв у него эстафету, показали, что догадка Римана верна. В 1896 г. Жак Адамар и Шарль-Жан де ла Валле Пуссен независимо друг от друга вывели теорему о распределении простых чисел, доказав, что все нетривиальные нули дзета-функции лежат в пределах критической полосы. Доказательства у обоих получились очень сложными и техничными, но тем не менее свою задачу они выполнили. Возникла новая мощная область математики — аналитическая теория чисел. Применение ей нашлось в самых разных уголках теории чисел: с ее помощью решали давние задачи и выявляли новые закономерности. Другие математики позже нашли несколько более простых доказательств теоремы о числе простых, а Атле Сельберг и Пал Эрдеш открыли даже очень сложное доказательство, вовсе не требовавшее применения комплексного анализа. Но к тому моменту при помощи идеи Римана было доказано бесчисленное множество важных теорем, включая аппроксимации многих функций теории чисел. Так что это новое доказательство хоть и добавило в эту историю каплю иронии, но ни на что, в сущности, не повлияло. В 1980 г. Дональд Ньюман нашел гораздо более простое доказательство, для которого достаточно оказалось всего лишь одной из самых базовых теорем комплексного анализа — теоремы Коши.
Хотя Риман объявил свою гипотезу ненужной для достижения ближайших целей, оказалось, что она жизненно необходима для разрешения многих других вопросов теории чисел. Прежде чем обсуждать гипотезу Римана, нам стоит взглянуть на некоторые теоремы, которые — если бы гипотеза была доказана — из нее следуют.
Одно из важнейших следствий — это величина погрешности в теореме о распределении простых чисел. Теорема, как вы помните, утверждает, что для большого