Читаем Величайшие математические задачи полностью

Приближенная формула с использованием Li(x) или x/log x стала известна как теорема о распределении простых чисел, где слово «теорема» использовалось в смысле «предположение». Поиск доказательства того, что эти формулы асимптотичны к π(x), стал одной из ключевых открытых задач теории чисел. Многие математики пытались одолеть ее при помощи традиционных методов этой области науки, и некоторые подошли к ответу достаточно близко, однако всегда оставалась какая-то хитрая посылка, которую никак не удавалось доказать. Нужны были новые методы. Они появились в результате любопытного переформулирования двух древних, еще евклидовых, теорем о простых числах.

Теорема о распределении простых чисел была ответом на евклидову теорему о том, что простые числа уходят в бесконечность и могут быть сколь угодно большими. Другая фундаментальная евклидова теорема говорит о единственности разложения на простые множители: каждое положительное целое число есть произведение простых чисел, причем только одного их набора. В 1737 г. Эйлер понял, что первую теорему можно переформулировать в виде поразительной формулы из действительного анализа, и тогда второе утверждение становится простым следствием этой формулы. Для начала я представлю формулу, а затем попытаюсь разобраться в ней. Вот она:



Здесь p принимает все простые значения, а s — константа. Эйлера интересовал в основном случай, при котором s — целое число, но его формула работает и для действительных чисел, в случае если s больше единицы. Это условие необходимо для того, чтобы ряд в правой части сошелся, т. е., будучи продолжен до бесконечности, принял бы осмысленное значение.

Это необыкновенная формула. В левой части мы перемножаем бесконечно много выражений, которые зависят только от простых чисел. В правой — складываем бесконечное число выражений, которые зависят от всех положительных целых чисел. Эта формула выражает, на языке анализа, некоторое отношение между целыми и простыми числами. Главное отношение такого рода — это единственность разложения на простые множители, именно она оправдывает существование формулы.

Я кратко опишу основной этап, чтобы показать, что за всем этим стоит разумная идея. Воспользовавшись школьной алгеброй, мы можем разложить выражение в ряд по p. Этот ряд напоминает правую часть формулы, но включает только степени p. А именно:



Когда мы перемножим все эти ряды, для всех простых p, и раскроем все скобки, мы получим комбинации с любыми степенями простых чисел, т. е. с любыми целыми положительными степенями. Все они выглядят как величины, обратные (т. е. единица, деленная на) s-й степени данного числа, и все возникают лишь единожды в связи с единственностью разложения на простые множители. Таким образом, получаем ряд в правой части.

Никому до сих пор не удалось найти простой алгебраической формулы для суммы этого ряда, хотя формул с интегралами немало. Поэтому мы присвоили ей особый символ — греческую букву дзета (ζ) — и определили новую функцию:



Вообще говоря, Эйлер не использовал символ ζ и рассматривал только положительные целые значения s, но я буду и дальше называть приведенный выше ряд эйлеровой дзета-функцией. Воспользовавшись своей формулой, Эйлер заключил, что существует бесконечно много простых чисел (для этого он рассматривал значения s, близкие к единице). Главной его целью было получить формулы вроде ζ (2) = π²/6 и найти сумму ряда для четных целых s. Развивать свою революционную идею дальше он не стал.

Другие математики заметили упущение Эйлера и рассмотрели нецелые значения s. В двух работах 1848 и 1850 гг. русский математик Пафнутий Чебышев предложил великолепную идею: попытаться доказать теорему о распределении простых чисел при помощи анализа. Начал он со связи между простыми числами и математическим анализом, обеспечиваемой эйлеровой дзета-функцией. Он не добился полного успеха, поскольку считал s действительным числом, а аналитические возможности действительного анализа весьма ограничены. Зато он сумел доказать, что для больших x отношение π(x) к x/log x лежит между двумя константами, одна из которых чуть больше единицы, а вторая — чуть меньше. Это был уже реальный результат, хотя пока еще не такой, как хотелось. Он позволил Чебышеву доказать постулат Бертрана, предложенный в 1845 г.: если взять любое натуральное число (≥2) и удвоить его, то между двумя этими числами обязательно найдется простое число.

Перейти на страницу:

Все книги серии Библиотека фонда «Династия»

Ружья, микробы и сталь
Ружья, микробы и сталь

Эта книга американского орнитолога, физиолога и географа Джареда Даймонда стала международным бестселлером и принесла своему создателю престижнейшую Пулитцеровскую премию, разом превратив академического ученого в звезду первой величины. Вопрос, почему разные регионы нашей планеты развивались настолько неравномерно, занимает сегодня очень многих — по каким причинам, к примеру, австралийские аборигены так и не сумели выйти из каменного века, в то время как европейцы научились производить сложнейшие орудия, строить космические корабли и передавать накопленные знания следующим поколениям? Опираясь на данные географии, ботаники, зоологии, микробиологии, лингвистики и других наук, Даймонд убедительно доказывает, что ассиметрия в развитии разных частей света неслучайна и опирается на множество естественных факторов — таких, как среда обитания, климат, наличие пригодных для одомашнивания животных и растений и даже очертания и размер континентов. Приводя множество увлекательных примеров из собственного богатого опыта наблюдений за народами, которые принято называть «примитивными», а также из мировой истории, Даймонд выстраивает цельную и убедительную теорию, позволяющую читателю по-новому осмыслить скрытые механизмы развития человеческой цивилизации.

Джаред Даймонд , Джаред Мэйсон Даймонд

Культурология / История / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное