Во времена Ньютона и Лейбница величины, о которых шла речь, представляли собой действительные числа, и результатом их работы, соответственно, стал действительный анализ. Когда же комплексные числа завоевали признание математиков, методы анализа естественным образом распространили и на них. Получился комплексный анализ, оказавшийся необычайно красивым и мощным инструментом. Вообще, когда дело доходит до анализа, комплексные функции ведут себя намного лучше, чем действительные. У них, конечно, есть свои особенности, но преимущества работы с комплексными функциями многократно перевешивают все их недостатки.
В какой-то момент математики с удивлением обнаружили, что арифметические свойства целых чисел можно с большой пользой переформулировать в терминах комплексных функций. До этого две системы ставили перед учеными очень разные вопросы и требовали использования очень разных методов. Но сегодня при помощи комплексного анализа — мощнейшего набора методик — можно открывать особые свойства функций теории чисел, а из них, в свою очередь, можно извлекать асимптотические формулы и многое другое.
В 1859 г. немецкий математик Бернхард Риман взял давнюю идею Эйлера и развил ее совершенно по-новому, определив так называемую дзета-функцию. Одним из результатов этой работы стала
В главе 2 мы видели, что простые числа обыкновенно встречаются тем реже, чем они больше. Поскольку казалось, что точных формул для их распределения наверняка не существует, возникало естественное желание поискать статистические закономерности. В 1797–1798 гг. Лежандр подсчитал, сколько простых чисел помещается в натуральном ряду вплоть до различных пределов. Для этого он воспользовался таблицами простых чисел, которые незадолго до того составили Георг Вега и Антон Фелькель. Веге, судя по всему, вообще нравились сложные расчеты: он составил таблицы логарифмов и в 1789 г. стал обладателем мирового рекорда по вычислению числа π, которое он посчитал до 140-го десятичного знака (из них 126 были посчитаны верно). А Фелькелю просто нравилось искать простые числа. Его главная работа вышла в 1776 г. и называлась «Таблица всех простых делителей чисел до 10 000 000, за исключением тех, что делятся на 2, 3 или 5». Для проверки делимости на 2, 3 и 5 есть простые способы, упомянутые в главе 2, и он сэкономил в книге много места, опустив эти числа. Лежандр открыл эмпирическую приближенную формулу для количества простых чисел, меньших заданного числа
В 1849 г. в письме к астроному Иоганну Энке Гаусс сообщил, что в свое время, лет в 15, сделал на полях таблицы логарифмов запись, в которой утверждалось количество простых чисел, меньших или равных
По мере того как
Аппроксимация в виде