Читаем Верховный алгоритм полностью

В романе Хемингуэя «И восходит солнце» Майка Кэмпбелла спрашивают, как он обанкротился, и тот отвечает: «Двумя способами. Сначала постепенно, а потом сразу». То же самое могли бы сказать в банке Lehman Brothers. В этом суть сигмоиды. Одно из правил прогно­зирования, сформулированных футуристом Полом Саффо, гласит: ищите S-образные кривые. Если не получается «поймать» комфортную температуру в душе — вода сначала слишком холодная, а потом сразу слишком горячая, — вините S-кривую. Развитие по S-образной кривой хорошо видно, когда готовишь воздушную кукурузу: сначала ничего не происходит, затем лопается несколько зерен, потом сразу много, потом почти все взрываются фейерверком, потом еще немного — и можно есть. Движения мышц тоже следуют сигмоиде: медленно, быстро и опять медленно: мультфильмы стали гораздо естественнее, когда диснеевские мультипликаторы поняли это и начали имитировать. По S-кривой движутся глаза, фиксируясь вместе с сознанием то на одном, то на другом предмете. Согласно фазовому переходу меняется настроение. То же самое с рождением, половым созреванием, влюбленностью, браком, беременностью, поступлением на работу и увольнением, переездом в другой город, повышением по службе, выходом на пенсию и смертью. Вселенная — огромная симфония фазовых переходов, от космических до микроскопических, от самых обыденных до меняющих нашу жизнь.

Сигмоида важна не просто как модель. В математике она трудится не покладая рук. Если приблизить ее центральный отрезок, он будет близок прямой. Многие явления, которые мы считаем линейными, на самом деле представляют собой S-образные кривые, потому что ничто не может расти бесконечно. В силу относительности и вопреки Ньютону ускорение не увеличивается линейно с увеличением силы, а следует по сигмоиде, центрированной на нуле. Аналогичная картина наблюдается с зависимостью электрического тока от напряжения в резисторах электрических цепей и в лампочках (пока нить не расплавится, что само по себе очередной фазовый переход). Если посмотреть на S-образную кривую издалека, она будет напоминать ступенчатую функцию, в которой выход в пороговом значении внезапно меняется с нуля до единицы. Поэтому, в зависимости от входящего напряжения, работу транзистора в цифровых компьютерах и аналоговых устройствах, например усилителях и тюнерах, будет описывать та же самая кривая. Начальный отрезок сигмоиды по существу экспоненциальный, а рядом с точкой насыщения она приближается к затуханию по экспоненте. Когда кто-то говорит об экспоненциальном росте, спросите себя: как скоро он перейдет в S-образную кривую? Когда замедлится взрывной рост населения, закон Мура исчерпает свои возможности, а сингулярность так и не наступит? Дифференцируйте сигмоиду, и вы получите гауссову кривую: «медленно — быстро — медленно» превратится в «низко — высоко — низко». Добавьте последовательность ступенчатых S-образных кривых, идущих то вверх, то вниз, и получится что-то близкое к синусоиде. На самом деле каждую функцию можно близко аппроксимировать суммой S-образных кривых: когда функция идет вверх, вы добавляете сигмоиду, когда вниз — отнимаете. Обучение ребенка — это не постепенное улучшение, а накопление S-образных кривых. Это относится и к технологическим изменениям. Взгляните на Нью-Йорк издали, и вы увидите, как вдоль горизонта разворачивается совокупность сигмоид, острых, как углы небоскребов.

Для нас самое главное то, что S-образные кривые ведут к новому решению проблемы коэффициентов доверия. Раз Вселенная — это симфония фазовых переходов, давайте смоделируем ее с помощью фазового перехода. Именно так поступает головной мозг: подстраивает систему фазовых переходов внутри к аналогичной системе снаружи. Итак, давайте заменим ступенчатую функцию перцептрона сигмоидой и посмотрим, что произойдет.

Альпинизм в гиперпространстве

Перейти на страницу:

Похожие книги