В алгоритме перцептрона сигнал ошибки действует по принципу «все или ничего»: либо правильно, либо неправильно. Негусто, особенно в случае сетей из многих нейронов. Можно понять, что ошибся нейрон на выходе (ой, это была не ваша бабушка?), но как насчет какого-то нейрона в глубинах мозга? И вообще, что значат правота и ошибка для глубинного нейрона? Однако если выход нейрона непрерывный, а не бинарный, картина меняется. Прежде всего мы можем оценить,
Всякий раз, когда «сетчатка» обучающегося алгоритма видит новый образ, сигнал распространяется по всей сети, пока не даст выход. Сравнение полученного выхода с желаемым выдает сигнал ошибки, который затем распространяется обратно через все слои и достигает сетчатки. На основе возвращающегося сигнала и вводных, полученных во время прохождения вперед, каждый нейрон корректирует вес
Обратное распространение — частный случай стратегии, очень распространенной в природе и в технологии: если вам надо быстро забраться на гору, выбирайте самый крутой склон, который только найдете. Технический термин для этого явления — «градиентное восхождение» (если вы хотите попасть на вершину) или «градиентный спуск» (если смотреть на долину внизу). Бактерии умеют искать пищу, перемещаясь согласно градиенту концентрации, скажем, глюкозы, и убегать от ядов, двигаясь против их градиента. С помощью градиентного спуска можно оптимизировать массу вещей, от крыльев самолетов до антенных систем. Обратное распространение — эффективный способ такой оптимизации в многослойном перцептроне: продолжайте корректировать вес
Так как же обратное распространение решает проблему машинного обучения? Может быть, надо просто собрать кучу нейронов, подождать, пока они наколдуют все, что надо, а потом по дороге в банк заехать получить Нобелевскую премию за открытие принципа работы мозга? К сожалению, в жизни все не так просто. Представьте, что у вашей сети только один вес; зависимость ошибки от него показана на этом графике:
Оптимальный вес, в котором ошибка самая низкая, — это 2,0. Если сеть начнет работу, например, с 0,75, обратное распространение ошибки за несколько шагов придет к оптимуму, как катящийся с горки мячик. Однако если начать с 5,5, мы скатимся к весу 7,0 и застрянем там. Обратное распространение ошибки со своими поэтапными изменениями весов не сможет найти глобальный минимум ошибки, а локальные минимумы могут быть сколь угодно плохими: например, бабушку можно перепутать со шляпой. Если вес всего один, можно перепробовать все возможные значения c шагом 0,01 и таким образом найти оптимум. Но когда весов тысячи, не говоря уже о миллионах или миллиардах, это не вариант, потому что число точек на сетке будет увеличиваться экспоненциально с числом весов. Глобальный минимум окажется скрыт где-то в бездонных глубинах гиперпространства — ищи иголку в стоге сена.
Вильям Л Саймон , Вильям Саймон , Наталья Владимировна Макеева , Нора Робертс , Юрий Викторович Щербатых
Зарубежная компьютерная, околокомпьютерная литература / ОС и Сети, интернет / Короткие любовные романы / Психология / Прочая справочная литература / Образование и наука / Книги по IT / Словари и Энциклопедии