Представьте, что вас похитили, завязали глаза и бросили где-то в Гималаях. Голова раскалывается, с памятью не очень, но вы твердо знаете, что надо забраться на вершину Эвереста. Как быть? Вы делаете шаг вперед и едва не скатываетесь в ущелье. Переведя дух, вы решаете действовать систематичнее и осторожно ощупываете ногой почву вокруг, чтобы определить самую высокую точку. Затем вы робко шагаете к ней, и все повторяется. Понемногу вы забираетесь все выше и выше. Через какое-то время любой шаг начинает вести вниз, и вы останавливаетесь. Это градиентное восхождение. Если бы в Гималаях существовал один Эверест, причем идеальной конической формы, все было бы прекрасно. Но, скорее всего, место, где все шаги ведут вниз, будет все еще очень далеко от вершины: вы просто застрянете на каком-нибудь холме у подножья. Именно это происходит с обратным распространением ошибки, только на горы оно взбирается в гиперпространстве, а не в трехмерном пространстве, как наше. Если ваша сеть состоит из одного нейрона и вы будете шаг за шагом подниматься к наилучшим весам, то придете к вершине. Но в многослойном перцептроне ландшафт очень изрезанный — поди найди высочайший пик.
Отчасти поэтому Минский, Пейперт и другие исследователи не понимали, как можно обучать многослойные перцептроны. Они могли представить себе замену ступенчатых функций S-образными кривыми и градиентный спуск, но затем сталкивались с проблемой локальных минимумов ошибки. В то время ученые не доверяли компьютерным симуляциям и требовали математических доказательств работоспособности алгоритма, а для обратного распространения ошибки такого доказательства не было. Но, как мы уже видели, в большинстве случаев локального минимума достаточно. Поверхность ошибки часто похожа на дикобраза: много крутых пиков и впадин, и на самом деле неважно, найдем ли мы самую глубокую, абсолютную впадину — сойдет любая. Еще лучше то, что локальный минимум бывает даже предпочтительнее, потому что он меньше подвержен переобучению, чем глобальный.
Гиперпространство — обоюдоострый меч. С одной стороны, чем больше количество измерений, тем больше места для очень сложных поверхностей и локальных экстремумов. С другой стороны, чтобы застрять в локальном экстремуме, надо застрять во
Тем не менее придавать слишком большое значение весам, которые находит обратное распространение ошибки, не стоит. Помните, что есть, вероятно, много очень разных, но одинаково хороших вариантов. Обучение многослойного перцептрона хаотично в том смысле, что, начав из слегка отличающихся мест, он может привести к весьма различным решениям. Этот феномен проявляется в случае незначительных отличий как в исходных весах, так и в обучающих данных и имеет место во всех мощных обучающихся алгоритмах, а не только в обратном распространении ошибки.
Мы
Перцептроны наносят ответный удар
Метод обратного распространения ошибки был изобретен в 1986 году Дэвидом Румельхартом, психологом из Калифорнийского университета в Сан-Диего, в сотрудничестве с Джеффом Хинтоном и Рональдом Уильямсом66. Они доказали, кроме всего прочего, что обратное распространение способно справиться с исключающим ИЛИ, и тем самым дали коннекционистам возможность показать язык Минскому и Пейперту. Вспомните пример с кроссовками Nike: подростки и женщины среднего возраста — их наиболее вероятные покупатели. Это можно представить с помощью сети из трех нейронов: один срабатывает, когда видит подростка, другой — женщину среднего возраста, а третий — когда активизируются оба. Благодаря обратному распространению ошибки можно узнать соответствующие веса и получить успешный детектор предполагаемых покупателей Nike. (Вот так-то, Марвин.)
Вильям Л Саймон , Вильям Саймон , Наталья Владимировна Макеева , Нора Робертс , Юрий Викторович Щербатых
Зарубежная компьютерная, околокомпьютерная литература / ОС и Сети, интернет / Короткие любовные романы / Психология / Прочая справочная литература / Образование и наука / Книги по IT / Словари и Энциклопедии