Отмеченный здесь характер соответствия между изменениями аргумента «X» и функции «У» совпадает, по существу, с требованием непрерывности вероятностной функции распределения начальных данных. На этот признак указывали, например, А.Пуанкаре и Г.Рейхенбах. [3] Смысл названного требования состоит в том, что при общей устойчивости некоторого комплекса начальных условий реализации данного явления из него нельзя исключить факторы, обуславливающие вариации отдельных элементов массового явления. Ибо эти факторы невозможно изолировать или проконтролировать. [4]
Тем самым, в своем качественном содержании уже простейшая теоретическая модель статистической закономерности ориентирована на принципиальную неизолированность изучаемого явления. А это представление в свою очередь сопряжено с отказом от поэлементного рассмотрения цепей подчинения, т.к. признание требования непрерывности вероятностной функции распределения начальных данных делает излишним поиск, выделение какого-либо отдельного возмущающего фактора, приводящего к разбросу значений элементов совокупности. Все такие факторы из группы возможных оказываются равновероятными.
В XX столетии развитый аппарат представления статистической закономерности формировался на базе понятия «распределение», которое относилось к так называемой «случайной величине». «Распределение», взятое в этом смысле стало своеобразной математической формой выражения закона. В ее рамках задаются всевозможные значения случайной величины. Причем, такое задание осуществляется путем установления «веса» каждого из значений, характеризуемого посредством численной меры вероятности. В своей абстрактно-математической форме статистическая закономерность описывает зависимость одних распределений от других и их изменение во времени. Инструмент такого описания дают теория вероятностей и математическая статистика, теоремы и правила которых как раз позволяют осуществлять сложные переходы от одних распределений к другим.
Какие же особенности и свойства вероятностного распределения позволили рассматривать его в качестве формы выражения закона? Если признавать существенность таких характеристик закона, как устойчивость и обобщенность, тогда естественно попытаться обнаружить соответствие свойств распределения выделенным здесь признакам закона.
На мой взгляд, устойчивость на уровне распределения обнаруживается прежде всего в достаточно строгой фиксированное™ значений вероятностей, сопоставляемых с выделенными по какому-либо признаку группировками значений случайной величины. Метрическое задание значений вероятностей позволяет в таком случае характеризовать любое вероятностное распределение как выражение устойчивого количественного отношения между определенными параметрами множества случайных явлений. Такие формы связи широко выделяются с помощью аппарата теории вероятностей в рамках статистической физики (классической и квантовой), в социологии, демографии, генетике и др. В то же время, «распределение» есть способ группировки вероятностей, значения которых составляют некоторую замкнутость и целостность, поскольку их общая сумма строго приравнивается к единице.
Обратимся теперь к обобщающей функции теоретико-вероятностной модели распределения. Таковая имеет непосредственную связь с выражением устойчивости в массовом случайном явлении, поскольку общее имеет один из своих моментов: одинаковость, повторяемость, которые в известном смысле могут служить синонимами устойчивости. В этом плане устойчивость количественных отношений, фиксируемая численными значениями вероятностей, может рассматриваться' и как обобщающая характеристика для вариаций случайных признаков соответствующей группировки или подмножества. Дело здесь заключается в том, что посредством вероятностей случайное событие получает свое определение как отнесенное к тому или иному подмножеству из некоторого множества возможных. Обобщенность же выражения случайного события состоит тогда в том, что оно становится элементом так называемой случайной величины, возможные значения которой определяют собой тип или вид событий из некоторого их множества. Например, случайным событием можно считать выпадение или невыпадение какой-либо грани игральной кости. Переход к вероятностям дает здесь возможность иметь дело не просто с множеством или полем случайных событий, но с их упорядоченностью в рамках случайной величины, именно с классами ее возможных значений, которым становится в соответствие та или иная вероятность.