Самая возможность реализации этой идеи опирается на объективный характер упрощения, присущий любому уровню материи. В силу же признания качественного аспекта сложности получает смысл утверждение, что простота простоте рознь. Данное обстоятельство находит свое выражение в разнообразии типов идеализаций, соответствующих видам простоты (одновременно и сложности).
Обычный прием, сложившийся в рамках классической науки, представлен как раз названным выше способом выделения конечного числа значимых переменных. Учет определенности достигается здесь благодаря тому, что отыскивается полный набор существенных свойств, наличие которых дает данное качество (скажем, в виде конкретной формы поведения системы). Нетрудно обнаружить предельный характер абстракции качественной определенности, которой руководствуются в процессе реализации данного приема. И действительно, неопределенность поведения, следующая из неполноты заданности параметров системы, здесь трактуется как свидетельство того, что отсутствует сам предмет, выражаемый понятием система. Таким образом предполагается, что с системой имеем дело лишь тогда, когда налицо строгая определенность. Если подойти с логической точки зрения, то предельность идеализации определенности выявляется в использовании в рассматриваемом случае принципа «да-нет», поскольку здесь принимается: определенность тождественна системе и простоте, неопределенность же выводит исследование за границы простоты. Подобный класс систем (соответственно - простоты и сложности) Эшби называл машинно-подобными. Их поведение целиком определяется значениями переменных. Представление о машинно-подобных системах имеет широкую сферу приложимости. Классическим образцом этого типа могут служить гидромеханические системы, описываемые уравнением Бернулли, термодинамические системы, описываемые уравнением Менделеева-Клапейрона и т. д.
В качестве существенной составляющей этого типа систем Эшби выделял «абсолютные системы», отличительной особенностью которых является единственность линии поведения, что может иметь место в случае, когда последующее состояние системы целиком определяется предыдущим [102].
С понятием «абсолютной системы» связан такой способ упрощения, который опирается по существу на Лапласовскую форму детерминизма. Одним из важнейших компонентов последней является представление о предопределенности поведения системы. Но требование предопределенности осуществимо лишь в одном случае, когда выбор системой своего поведения заранее покоится на учете всех внешних воздействий, в полном объеме их количественных и качественных характеристик. Если отрицать метафизическое (в смысле умозрения) представление Лапласа о предопределенности мира в целом, то необходимо признать, что принцип абсолютной системы в действительности не реализуется.
Вместе с тем момент однозначной определенности предшествующим состоянием последующего, фиксируемый данной идеализацией, является хорошим приближением в описании поведения ряда реальных материальных систем. Прежде всего это сфера объектов, исследуемых классической механикой. Использование идеализации такого рода оказывается весьма полезным и в кибернетике, где она играет существенную методологическую роль, выступая инструментом построения строгой однозначной теории. Благодаря этому значительно облегчается осуществление столь важного для кибернетики процесса формализации.
Отмечая плодотворность метода выделения существенных переменных как способа упрощения, следует подчеркнуть его односторонность и соответственно бедность того представления о сложности, на которое он опирается. В самом деле, реализация этого подхода состоит в отбрасывании, игнорировании момента взаимосвязи системы, а тем самым и внешних отклонений, которые выступают в качестве результата такого взаимодействия. Между тем совершенно очевидно, что проблема сложности заключается также в том, что система испытывает влияние окружающей среды. Следовательно, возникает вопрос о средствах контроля этого влияния.
Соответствующий понятийный аппарат формируется в рамках системного подхода, ориентированного на идею функциональности, трактовка которой дана нами в предыдущем параграфе. Сохраняя общий подход с позиций определенности, современный системный метод учитывает и неопределенность, что обогащает собственно понимание сложности. Его реализация, будучи связанной с отказом от модели, представляющей форму однозначной детерминированности, опирается на признание объективного характера случайности. Не уточняя здесь содержания данной категории, замечу лишь, что с ней правомерно связывать момент неопределенности, или говоря языком кибернетики, энтропию в информационном смысле слова.