Читаем Вероятности и неприятности. Математика повседневной жизни полностью

Рис. 3.6. Вероятность приземления маслом вниз разных бутербродов с разными условиями в зависимости от высоты падения. Для каждой высоты проводилось 100 испытаний


Какая-то тенденция видна, но в глаза не бросается. При усреднении получается, что искомая вероятность от высоты стола почти не зависит и едва превышает 50 %. Можно ли доверять такому эксперименту? Опровергает ли он закон бутерброда? Может, мы недостаточно много бросали бутербродов — вон какие шумные получились данные![11] Увеличим число бросаний и посмотрим, что получится (рис. 3.7).


Рис. 3.7. Вероятность приземления маслом вниз разных бутербродов, посчитанная для большего числа испытаний (по 500 на каждую высоту)


Выбросов стало меньше, но еще отчетливее видно, что закон бутерброда какой-то невыразительный. Отклонения от 50 % не настолько значительны, чтобы стоило говорить о каком-то «законе». Что же, мы готовы его развенчать?

Метод Монте-Карло выглядит заманчиво простым: знай себе подставляй какие попало данные и смотри, что получается. Математика — честная штука: на какой попало вопрос она готова дать какой попало ответ. А вот имеет ли смысл этот ответ, сильно зависит от вопроса. Правильно ли мы проводили наши эксперименты?

Как правильно задавать вопрос природе?

Перед тем как приступать к экспериментам, не таким игрушечным, как у нас, а настоящим и дорогостоящим, использующим орбитальный спутник, ускоритель элементарных частиц или тысячу настоящих бутербродов с маслом, необходимо провести подготовительную работу. И один из мощных и красивых методов, позволяющих понять, как верно и оптимально провести эксперимент, — анализ размерностей задачи.

Механику бутерброда мы рассчитывали, пользуясь импульсами и силами — физическими величинами, которые, в свою очередь, связаны уравнениями аналитической механики. И вновь это не просто числа. В физике количественные величины, которые мы измеряем и подставляем в уравнения, не «умещаются» в поле чисел. Они оснащены дополнительной структурой, которая называется размерностью. Не все корректные математические выражения имеют смысл, если в них участвуют размерные величины. Скажем, нет смысла складывать скорость и массу, невозможно сравнить силу и расстояние. Однако можно рассмотреть произведение скорости и массы, получив новую размерную величину — количество движения, или импульс; можно возвести скорость в квадрат и поделить на расстояние, получив таким образом величину, имеющую размерность ускорения.

Анализ размерности и теория подобия родились давно. Со времен лорда Рэлея они используются в механике, электродинамике, астрофизике и космологии, позволяя с пугающей изящностью подходить к решению очень сложных задач. Однако исследования в этой области не завершены, и строгое определение структуры, образуемой количественными (размерными) величинами, было дано лишь в 2016 году испанским математиком Альваро Рапозо[12].

Ограничения, накладываемые размерностями на физические формулы, часто воспринимаются учениками и студентами как лишняя морока, за которой нужно следить. Но логически согласованные ограничения чрезвычайно полезны! Они отсеивают неверные выражения, позволяют «предвидеть» структуру решения физической задачи до ее детального разбора, это мощный инструмент при планировании и анализе экспериментальных данных.

Но вот что важно. Мы рассчитывали падение бутерброда в компьютерной программе, используя не размерные, а обыкновенные числа. Как можно «освободить» физическую величину от размерности и превратить в число? Для этого предназначены хорошо нам знакомые единицы измерения физических величин: все эти метры, фунты, минуты и ньютоны. Единицы измерения берут на себя размерную часть величины, оставляя нам множитель — вещественное число, с которым уже может иметь дело вычислительная машина. Например, скорость в выбранном направлении величиной 72 км/ч можно представить числом 72. Но тут есть тонкость: от выбора единиц измерения зависит числовое представление. При других единицах (скажем, метрах и секундах) эта же скорость будет представлена другим числом: 20. Числа разные, но величина одна, и она не зависит от конкретных единиц.

Возникает вопрос: существует ли в каком-либо смысле «самая лучшая» система единиц? Оказывается, да, но для каждой задачи она своя. При решении нужно использовать в качестве единиц измерения размерные величины, входящие в задачу.

Перейти на страницу:

Все книги серии Библиотека фонда «Эволюция»

Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием

"Ни кошелька, ни жизни" Саймона Сингха и Эдзарда Эрнста – правдивый, непредвзятый и увлекательный рассказ о нетрадиционной медицине. Основная часть книги посвящена четырем самым популярным ее направлениям – акупунктуре, гомеопатии, хиропрактике и траволечению, а в приложении кратко обсуждаются еще свыше тридцати. Авторы с самого начала разъясняют, что представляет собой научный подход и как с его помощью определяют истину, а затем, опираясь на результаты многочисленных научных исследований, страница за страницей приподнимают завесу тайны, скрывающую неутешительную правду о нетрадиционной медицине. Они разбираются, какие из ее методов действенны и безвредны, а какие бесполезны и опасны. Анализируя, почему во всем мире так широко распространены методы лечения, не доказавшие своей эффективности, они отвечают не только на вездесущий вопрос "Кто виноват?", но и на важнейший вопрос "Что делать?".

Саймон Сингх , Эрдзард Эрнст

Домоводство / Научпоп / Документальное
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература

Похожие книги