В моих силах задать все параметры задачи: начальные позицию и угол бутерброда, горизонтальную скорость для случая смахивания со стола, коэффициенты трения, размеры бутерброда и высоту падения. В момент, когда бутерброд касается пола, фиксируется угол бутерброда, вернее угол вектора, нормального к нему. О том, с какой стороны оказалось масло, нам скажет знак синуса этого угла: положительному значению соответствует удачный случай, а отрицательному — положение маслом вниз. Результат заносится в таблицу, и новый виртуальный бутерброд готов к падению. Задачу мы поставим такую: оценить вероятность приземления бутерброда маслом вниз при его падении с заданной высоты.
При этом мы ничего пока не будем говорить о масле. Но обещаю, что ему будет посвящен отдельный разговор, где мы подробно рассмотрим его роль в этом законе.
Как правильно говорить о случайных величинах
Метод Монте-Карло подразумевает, что в качестве параметров используются случайные переменные. И здесь наконец пора разобраться с тем, что же такое
Вернемся к математическим структурам. Какой структурой можно моделировать результаты выпадения числа на игральной кости или уровень воды в реке, ведь там постоянное волнение? Как работать с числом автомобилей, проезжающих перекресток в течение часа? Какой структурой можно описать состояние электрона в атоме водорода? С одной стороны, это конкретные числа из вполне определенного множества значений: для кости, например, из множества {1, 2, 3, 4, 5, 6}, — и какое-нибудь значение легко получить, проведя эксперимент. Однако повторный опыт даст иной результат — это явно не просто число: сегодня оно одно, завтра другое. Может даже возникнуть философский вопрос: а имеет ли смысл говорить о каком-то точном значении «уровня воды в реке» или числе автомобилей, ведь эти величины невозможно «поймать» и зафиксировать? Возможно ли в каком-либо смысле
Часто, говоря о таких случайных величинах, ограничиваются одним средним значением, и мы говорим о «средней скорости в час пик» или об «орбите электрона». Но это отличный способ запутаться или даже намеренно запутать. Если фраза «средняя скорость в час пик равна 15 км/ч» дает неплохое представление о ситуации на улице в целом, то переучивать студентов-физиков от мышления орбитами к оперированию волновыми функциями уже весьма непросто. Ну и, наконец, какой смысл в среднем значении числа, выпадающего на игральной кости? Посчитать-то его можно, любой с этим справится: (1 + 2 + 3 + 4 + 5 + 6) / 2 = 3,5. Но это число не говорит ровным счетом ничего о рассматриваемой случайной величине. Его даже нет на гранях кубика.
Может быть, нужно указать два числа: среднее и дисперсию? Это уже лучше, но опять же пример с игральной костью показывает, что это явно не вся информация об интересующем нас объекте. А что, если случайные величины — не числа, а множества? Скажем, уровень воды в реке можно попытаться описать интервалом возможных значений с учетом волнения, а для примера с машинами сказать, что за час проезжает от 1 до 100 автомобилей и т. д. Но легко увидеть, что и множества возможных значений тоже недостаточно: например, при многократном повторении измерения количества автомобилей на улице какие-то числа будут встречаться чаще, а каких-то мы не дождемся вовсе.
В предыдущей главе, определяя вероятность, мы ввели меру как функцию на вероятностном пространстве. Для случайной величины элементарными событиями этого пространства будут элементы области ее определения, а мерой задается
Для уровня воды в реке или скорости машин распределение может быть выражено в виде гладкой колоколообразной кривой. Количество машин, зафиксированных на дороге в единицу времени, должно быть натуральным числом, и его распределение можно представить в виде дискретной функции, определенной только на натуральных числах, или точной формулы. Наконец, моделью игральной кости может быть таблица, показывающая вероятность выпадения каждого из возможных чисел (рис. 3.2).
Рис. 3.2.
Примеры представления распределений различных случайных величин