Читаем Вероятности и неприятности. Математика повседневной жизни полностью

В моих силах задать все параметры задачи: начальные позицию и угол бутерброда, горизонтальную скорость для случая смахивания со стола, коэффициенты трения, размеры бутерброда и высоту падения. В момент, когда бутерброд касается пола, фиксируется угол бутерброда, вернее угол вектора, нормального к нему. О том, с какой стороны оказалось масло, нам скажет знак синуса этого угла: положительному значению соответствует удачный случай, а отрицательному — положение маслом вниз. Результат заносится в таблицу, и новый виртуальный бутерброд готов к падению. Задачу мы поставим такую: оценить вероятность приземления бутерброда маслом вниз при его падении с заданной высоты.

При этом мы ничего пока не будем говорить о масле. Но обещаю, что ему будет посвящен отдельный разговор, где мы подробно рассмотрим его роль в этом законе.

Как правильно говорить о случайных величинах

Метод Монте-Карло подразумевает, что в качестве параметров используются случайные переменные. И здесь наконец пора разобраться с тем, что же такое случайная величина.

Вернемся к математическим структурам. Какой структурой можно моделировать результаты выпадения числа на игральной кости или уровень воды в реке, ведь там постоянное волнение? Как работать с числом автомобилей, проезжающих перекресток в течение часа? Какой структурой можно описать состояние электрона в атоме водорода? С одной стороны, это конкретные числа из вполне определенного множества значений: для кости, например, из множества {1, 2, 3, 4, 5, 6}, — и какое-нибудь значение легко получить, проведя эксперимент. Однако повторный опыт даст иной результат — это явно не просто число: сегодня оно одно, завтра другое. Может даже возникнуть философский вопрос: а имеет ли смысл говорить о каком-то точном значении «уровня воды в реке» или числе автомобилей, ведь эти величины невозможно «поймать» и зафиксировать? Возможно ли в каком-либо смысле точное знание о случайной переменной?

Часто, говоря о таких случайных величинах, ограничиваются одним средним значением, и мы говорим о «средней скорости в час пик» или об «орбите электрона». Но это отличный способ запутаться или даже намеренно запутать. Если фраза «средняя скорость в час пик равна 15 км/ч» дает неплохое представление о ситуации на улице в целом, то переучивать студентов-физиков от мышления орбитами к оперированию волновыми функциями уже весьма непросто. Ну и, наконец, какой смысл в среднем значении числа, выпадающего на игральной кости? Посчитать-то его можно, любой с этим справится: (1 + 2 + 3 + 4 + 5 + 6) / 2 = 3,5. Но это число не говорит ровным счетом ничего о рассматриваемой случайной величине. Его даже нет на гранях кубика.

Может быть, нужно указать два числа: среднее и дисперсию? Это уже лучше, но опять же пример с игральной костью показывает, что это явно не вся информация об интересующем нас объекте. А что, если случайные величины — не числа, а множества? Скажем, уровень воды в реке можно попытаться описать интервалом возможных значений с учетом волнения, а для примера с машинами сказать, что за час проезжает от 1 до 100 автомобилей и т. д. Но легко увидеть, что и множества возможных значений тоже недостаточно: например, при многократном повторении измерения количества автомобилей на улице какие-то числа будут встречаться чаще, а каких-то мы не дождемся вовсе.

В предыдущей главе, определяя вероятность, мы ввели меру как функцию на вероятностном пространстве. Для случайной величины элементарными событиями этого пространства будут элементы области ее определения, а мерой задается распределение вероятностей для этой величины. И вот это уже исчерпывающая и точная информация. Итак, подводим итог: случайная величина однозначно и полностью характеризуется своим распределением. Распределение, в свою очередь, представляет собой функцию. Ее область определения — множество возможных значений случайной величины, а область значений этой функции — вероятности для этих значений.

Для уровня воды в реке или скорости машин распределение может быть выражено в виде гладкой колоколообразной кривой. Количество машин, зафиксированных на дороге в единицу времени, должно быть натуральным числом, и его распределение можно представить в виде дискретной функции, определенной только на натуральных числах, или точной формулы. Наконец, моделью игральной кости может быть таблица, показывающая вероятность выпадения каждого из возможных чисел (рис. 3.2).


Рис. 3.2. Примеры представления распределений различных случайных величин


Перейти на страницу:

Все книги серии Библиотека фонда «Эволюция»

Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием

"Ни кошелька, ни жизни" Саймона Сингха и Эдзарда Эрнста – правдивый, непредвзятый и увлекательный рассказ о нетрадиционной медицине. Основная часть книги посвящена четырем самым популярным ее направлениям – акупунктуре, гомеопатии, хиропрактике и траволечению, а в приложении кратко обсуждаются еще свыше тридцати. Авторы с самого начала разъясняют, что представляет собой научный подход и как с его помощью определяют истину, а затем, опираясь на результаты многочисленных научных исследований, страница за страницей приподнимают завесу тайны, скрывающую неутешительную правду о нетрадиционной медицине. Они разбираются, какие из ее методов действенны и безвредны, а какие бесполезны и опасны. Анализируя, почему во всем мире так широко распространены методы лечения, не доказавшие своей эффективности, они отвечают не только на вездесущий вопрос "Кто виноват?", но и на важнейший вопрос "Что делать?".

Саймон Сингх , Эрдзард Эрнст

Домоводство / Научпоп / Документальное
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература

Похожие книги